首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
向水相中加入有机物或盐, 在一定组成范围内, 可以形成密度不同的两相, 即双水相, 目前在生物萃取领域有广泛的应用。离子液体/表面活性剂体系的双水相体系符合绿色化学的要求, 而且目前研究尚不多见。采用离子液体四丁基膦氯化铁盐、十四烷基三丁基膦氯化铁盐([P4444]FeCl4、[P44414]FeCl4)和两种表面活性剂十二烷基硫酸钠、十二烷基苯磺酸钠(SDS、SDBS)及柠檬酸钠混合形成双水相体系, 并绘制了[P4444]FeCl4([P44414]FeCl4)/SDS(SDBS)/盐4个体系的相图, 用粒度测试研究发现, 双水相的上相粒度约为60~80 nm, 下相粒度太小而未能检测出来。使用紫外-可见分光光度法研究了双水相体系对不同性质染料的萃取效果。结果表明, 离子液体的疏水链长度和表面活性剂疏水链上存在苯环与否都对体系中双水相的区域产生影响。4个双水相体系都对水溶性染料有很好的萃取作用, 但是对油溶性染料萃取效果不佳。此项研究促进了离子液体在化学分离领域的开发利用。  相似文献   

2.
季膦盐离子液体由于其独特的物理化学性质而被广泛应用,由于其结构的多样化,目前还没有对其基本性质进行系统地研究。采用傅里叶变换红外光谱法(FT-IR)研究了AOT/环己烷中分别加入两种季膦盐离子液体P[4444]FeCl_4和P[44414]FeCl_4水溶液后所形成W/O型微乳液的性质,并与加入普通咪唑型离子液体[Bmim]Cl作对比。采用Peakfit分峰技术,将增溶水分为结合水、本体水和束缚水,并且用电位粒度仪测试了微乳液粒度的大小。经过对加入不同浓度的离子液体,微乳液水状态的变化进行比较,发现3种离子液体在微乳液中增溶的位置不同,按照[Bmim]Cl、P[4444]FeCl_4、P[44414]FeCl_4的顺序由微乳液的油水界面向栅栏层移动。由微乳液的粒径随浓度的变化关系,印证了离子液体在微乳液中增溶位置的正确性。通过研究两种季膦盐离子液体对于微乳液性质的影响,总结其作用规律,为新型离子液体的应用奠定基础。  相似文献   

3.
以聚乙二醇400(PEG400)为溶剂,氨基酸类离子液体(AAILs)作为化学吸收剂的混合体系具有蒸汽压极低、热稳定性好、黏度和再生能耗低、CO2吸收量和选择性高等优点,适用于燃烧前CO2捕集过程的高温高压吸收条件。本文采用压降法,测定了以四正丁基膦([P4444]+)为阳离子,甘氨酸(Gly)、丙氨酸(Ala)和脯氨酸(Pro)作为阴离子的3种氨基酸类离子液体的混合溶剂体系对CO2的吸收速率,并建立了该无水体系的CO2吸收动力学模型。对于反应速率而言,在333.15K时,[P4444][Gly]-PEG400 > [P4444][Pro]-PEG400 > [P4444][Ala]-PEG400,温度升高至373.15K时,[P4444][Pro]-PEG400 > [P4444][Gly]-PEG400 > [P4444][Ala]-PEG400;根据相关吸收动力学参数,推测出CO2在AAILs-PEG400中的反应均为快反应。通过研究其吸收动力学,获得了关键的吸收动力学数据,为后续的工业开发设计提供基础数据和设计依据。  相似文献   

4.
《广东化工》2021,48(10)
离子液体微乳液具有稳定性高、溶解能力强和"可设计性"的优良特性。研究以季铵盐离子液体为极性相,以环己烷为非极性相,曲拉通-100和正丁醇为复合表面活性剂构筑具有离子液体包油(O/IL)、双连续(BC)和油包离子液体(IL/O)三种结构的微乳液体系。当温度从20℃升高至50℃时,[N_(4444)]CF3COO、[N_(4444)]Cl和[N_(4444)]Br三种季铵盐离子液体微乳液的单相区面积增大,且黏度降低。[N_(4444)]CF3COO微乳液粒径随温度升高而增大,而[N_(4444)]Cl和[N_(4444)]Br微乳液则相反。结果表明,温度和离子液体阴离子种类是影响季铵类离子液体成相能力和理化特性的重要因素。该研究能够为离子液体微乳液体系的设计和应用提供理论指导。  相似文献   

5.
离子液体-分子溶剂复合萃取剂脱除水中酚类化合物   总被引:1,自引:0,他引:1       下载免费PDF全文
构建了疏水性离子液体-分子溶剂复合萃取剂,并研究了其对酚类化合物的萃取性能。结果表明,与纯离子液体萃取剂相比,三己基十四烷基溴化([P66614]Br)-乙酸乙酯复合萃取剂在显著降低萃取剂黏度的同时,获得了较高的酚类溶质分配系数。当萃取剂中[P66614]Br摩尔分数为20%时,苯酚的分配系数为345,是纯乙酸乙酯为萃取剂时的5.3倍,是[omim]BF4、[C12mim]NTf2等常规疏水离子液体的9~60倍;比纯[P66614]Br为萃取剂时的分配系数下降25.3%,黏度却比纯[P66614]Br降低99%以上。COSMO-RS研究表明[P66614]Br与苯酚之间较强的氢键作用是获得较高苯酚分配系数的关键因素。该复合萃取剂对间苯三酚、4-氯苯酚和2,5-二硝基苯酚等物质也有良好的萃取能力。上述结果为开发兼具良好热力学性能和动力学性能的脱酚萃取剂提供了新的思路。  相似文献   

6.
采用反相(W/O)微乳液法制备负载型Pt基催化剂,以间氯硝基苯(m-CNB)选择加氢反应为探针,考察微乳液组成、助表面活性剂和油相种类、还原剂用量及载体种类等制备参数对催化剂活性的影响,并对Pt粒子及催化剂进行TEM表征。结果表明:选择十六烷基三甲基溴化胺(CTAB)/正丁醇/环己烷/H2PtCl6溶液的W/O微乳体系,m(CTAB)∶m(正丁醇)=3∶7,m(CTAB+正丁醇)∶m(环己烷)=3∶7,H2PtCl6溶液含量3.6%,N2H4·H2O用量100 μL时制备的Pt/γ-Al2O3催化剂对m-CNB选择加氢活性最高。TEM分析表明催化剂中Pt粒子均匀分散在载体上。  相似文献   

7.
双微乳液法制备纳米硫酸钡颗粒   总被引:2,自引:1,他引:1       下载免费PDF全文
在水溶液/TritonX-100/正己醇/环己烷组成的反相微乳液中,以氯化钡和硫酸钠为原料,通过沉淀反应,制备出类球形BaSO4纳米颗粒,并通过XRD、SEM、TEM、FTIR对其进行表征。考察了三种反应方式、水/TritonX-100摩尔比(R)、反应物浓度以及助表面活性剂/表面活性剂摩尔比(P)对纳米BaSO4颗粒大小和形貌的影响。同时考察了R对微乳液液滴大小和粒径分布的影响,并通过动态光散射技术(DLS)对微乳液液滴进行测定。实验结果表明:室温条件下,采用双微乳液法,R=17.97,P在2.11~4.22之间是纳米BaSO4颗粒合成的最佳反应条件,反应物浓度对BaSO4颗粒的大小和形貌几乎没有影响。在该反应条件下,合成出的类球形BaSO4粒径为18~22 nm,产率可达87.5%。  相似文献   

8.
低共熔溶剂(DESs)已被广泛研究并应用于酸性气体的吸收,本研究发现苯甲酸类DESs能够可逆高效地吸收一氧化氮(NO)。以苯甲酸(BA)、硫脲、尿素和咪唑为氢键供体(HBD),以离子液体为氢键受体(HBA)制备了一系列的DESs。吸收NO的实验结果表明,以氯化四丁基膦(P4444Cl)为HBA和以BA为HBD的DESs表现出较高的NO吸收速率和饱和吸收量。BA/P4444Cl (1∶2) DES在101.3 kPa、303.15 K下,NO吸收量为2.75 mol/mol。热重测试和再生实验的结果表明,BA/P4444Cl (1∶2) DES具有理想的热稳定性和重复使用性。通过FTIR、1H NMR和高斯模拟计算,探讨了BA/P4444Cl (1∶2) DES对NO的吸收机理,发现NO与BA的含氢氧原子之间存在化学相互作用,且BA的易去质子化性质有利于NO的吸收。  相似文献   

9.
基于失重法和分子模拟方法,研究了1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)的腐蚀性和离子液体分子与金属表面的相互作用。实验结果表明[BMIM]HSO4对304不锈钢具有腐蚀性,且在水溶液中腐蚀性显著增强。基于量子化学方法计算了[BMIM]HSO4分子的HOMO和LUMO分布、Fukui指数及分子内部特征参数,计算结果表明[BMIM]HSO4在Fe金属表面吸附的位置主要集中在阴离子硫酸氢根和阳离子咪唑环上,可分别形成配位键和反馈键,在水溶液中[BMIM]HSO4分子与金属表面的相互作用变弱。分子动力学模拟揭示了在不同的环境中[BMIM]HSO4分子在Fe金属表面的吸附过程和吸附能。量子化学计算和分子动力学模拟结果一致,从理论上解释了在水溶液中[BMIM]HSO4腐蚀性增强的原因。  相似文献   

10.
宋华  汪淑影  李锋  李瑞峰 《化工进展》2011,30(4):771-776
采用十六烷基三甲基溴化铵(CTAB)/正丁醇/环己烷/H2PtCl6溶液的微乳体系,以N2H4·H2O为还原剂,Al2O3为载体制备Pt/Al2O3催化剂。以邻氯硝基苯(o-CNB)选择加氢反应为探针,考察微乳液组成对Pt/Al2O3催化剂选择加氢活性的影响。运用XRD、XPS、IR、TEM和EDS对载体和催化剂进行表征。结果表明,微乳体系中CTAB∶正丁醇∶环己烷质量比9∶21∶70,3.6% H2PtCl6溶液中制备的Pt/Al2O3催化剂的o-CNB选择加氢活性最高。Pt粒子粒径5 nm左右,与载体之间没有明显的电子效应。对于取代位置不同的间、对氯硝基苯(m-CNB、p-CNB)加氢,Pt/Al2O3催化剂也表现出较高的催化活性。  相似文献   

11.
微乳法合成磷酸钙纳米纤维及其机理探讨   总被引:3,自引:0,他引:3  
分别以非离子表面活性剂(C12E8)和阳离子表面活性剂(CTAB)为模板剂,在反微乳体系中制备了磷酸钙纳米纤维.在水/C12E8/环己烷体系中纤维长约为325 nm,宽约为13 nm,为无定形态;在水/CTAB/环己烷体系中纳米纤维的长度>500 nm,宽度约为14 nm,结晶较完全.两种表面活性剂的作用机理完全不同:在非离子表面活性剂体系中,表面活性剂主要起到“微反应器”的作用;而在阳离子表面活性剂中,表面活性剂主要起到“生长引导剂”作用.  相似文献   

12.
贤凤  程婉婷  高静 《现代化工》2022,(6):129-134
以壳聚糖水溶液、1-丁基-3-甲基咪唑六氟磷酸盐([C4min]PF6)、不同质量比的TX-100和正丁醇为原料构建离子液体包水微乳液体系,并对其进行了表征。采用反相微乳液交联技术制备壳聚糖纳米微球,并将其应用于吸附水溶液中的氟离子。结果表明,选取质量比为4∶1的TX-100/正丁醇为乳化剂构建稳定的离子液体包水微乳液,粒径范围在10 nm以内,黏度低且稳定。红外光谱分析结果表明,壳聚糖纳米微球成功交联,粒径在200 nm以内,对于去除废水中氟离子具有良好的效果,其中脱氟率达到(60.28±1.96)%,平均吸收量为1.558 mg/g。  相似文献   

13.
刘江龙  郭焱  席艺慧 《化工进展》2020,39(2):776-789
含铜废水主要来自电镀、有色冶炼、有色金属矿山开采、染料生产等过程。因Cu(Ⅱ)具有高毒性和生物富集性,严重威胁生态环境和人类健康。利用浓盐酸、三氯化铁(FeCl3)、十六烷基三甲基溴化铵(CTAB)依次对拜耳法赤泥(RM)进行处理、改性,制备出了一种去除率高、吸附量大、吸附效果好的重金属离子吸附剂。通过SEM、TEM、XRD、BET、元素分析、FTIR、热重分析等手段对其进行表征,并探究溶液pH、吸附剂投加量以及吸附温度等条件对水溶液中Cu(Ⅱ)吸附效果的影响。结果表明:酸浸赤泥(RM-HCl)比表面积比RM增大20倍,经过FeCl3和CTAB改性后赤泥表面负载了大量羟基氧化铁(FeOOH)并且改善了吸附材料的表面性质,提高了吸附材料与Cu(Ⅱ)之间的亲和力和单层吸附能力。综合改性赤泥(FeCl3/CTAB/RM)对铜的吸附时间在100min达到平衡,其最佳吸附pH为6、最佳吸附剂投加量为2g/L、饱和吸附量为221mg/g。吸附过程较好地符合准二级动力学模型和Langmuir吸附等温模型,热力学数据说明该吸附是吸热、自发的过程。吸附机理主要是FeCl3/CTAB/RM表面的羟基(Si-OH、α-FeOOH和β-FeOOH)以及掺杂的氯原子和表面活性剂,通过物理吸附(微胶束、静电引力)和化学吸附(离子交换、氢键)有效地去除Cu(Ⅱ)离子。  相似文献   

14.
研究了CTAB和TritionX-100复配表面活性剂在氯仿作为溶剂时,增溶离子液体bmimBF(IL)时所形成非水微乳液的电导性质,并且与含水体系的微乳液作了比较,发现两者存在较大的差别.在非水微乳液中,随着离子液体质量分数的增加,体系经历了IL/O型微乳液、双连续相、O/IL微乳液三种状态,并且采用循环伏安法对此结论进行了验证.两种表面活性剂复配后,在IL/O型微乳液阶段电导率随着CTAB的摩尔分数(α)增大而增大,在双连续相和O/IL微乳液阶段,体系的电导率随着α增大而减小.在含水微乳液中,只出现O/W型微乳液,而且随着增溶水质量分数的增加电导率下降.增溶水量一定的情况下,电导率随着α值增大而增大.  相似文献   

15.
发展高效、经济、绿色的SO2吸收剂不但具有较强的学术价值,而且有良好的应用前景。设计并制备了一系列含醚的阴离子功能化离子液体,系统地研究了阴离子上引入醚基团对离子液体SO2吸收容量的影响。结果表明,在阴离子的苯环上引入甲氧基,对离子液体的吸收容量有明显提升。当阳离子为摩尔质量更小的三丁基乙基磷[P4442]时,所得离子液体的吸收容量没有明显下降,20℃、105 Pa SO2下,[P4442][2-CH3OPhCOO]有效吸收量为每摩尔离子液体吸收3.32 mol SO2,有效质量吸收量是每克离子液体吸收0.56 g SO2。六次吸收解吸循环,表明[P4442][2-CH3OPhCOO]可以高效可逆地捕集SO2。基于含醚阴离子功能化离子液体的加强效应进行气体捕集的方法,可进一步应用于分离、催化等领域。  相似文献   

16.
离子液体液液萃取分离正辛烷/邻二甲苯   总被引:1,自引:0,他引:1       下载免费PDF全文
将直馏石脑油分离为脂肪烃和芳烃有助于实现石脑油资源的优化利用,溶剂萃取是芳烃/脂肪烃分离的重要途径,萃取剂的设计与优选对萃取过程至关重要。实验探究了多种离子液体对正辛烷/邻二甲苯混合物萃取分离的效果,以萃取选择性、分配系数和萃取性能指数作为评价指标优选出1-丁基-2,3-二甲基咪唑四氯化铁([Bm2im][FeCl4])萃取剂。对于中低浓度芳烃体系(<33%),在30℃、溶剂质量比为4时,邻二甲苯萃取选择性在45以上,分配系数在0.38~0.40,萃取性能指数在18以上,单次萃取脱芳率可达60%以上。相比传统的环丁砜萃取剂,[Bm2im][FeCl4]萃取剂可以使体系具有更大的两相区,易于正辛烷/邻二甲苯的分离。利用量子化学软件探究[Bm2im][FeCl4]与正辛烷/邻二甲苯的弱相互作用,并计算其结合能,解释离子液体高选择性萃取邻二甲苯的原因。  相似文献   

17.
宋华  李锋  汪淑影  程喜全 《化工进展》2011,(7):1489-1493
采用反相(W/O)微乳液法制备负载型Pt基催化剂,以间氯硝基苯(m-CNB)选择加氢反应为探针,考察微乳液组成、助表面活性剂和油相种类、还原剂用量及载体种类等制备参数对催化剂活性的影响,并对Pt粒子及催化剂进行TEM表征。结果表明:选择十六烷基三甲基溴化胺(CTAB)/正丁醇/环己烷/H2PtCl6溶液的W/O微乳体系...  相似文献   

18.
张美美  薛腾  唐二军  袁淼  刘少杰  赵地顺 《化工进展》2016,35(10):3196-3200
采用N-烷基化方法将二乙烯三胺(DETA)接枝到氯化1-氯乙基吡啶离子液体[CePy]Cl上,合成了离子液体氯化1-{2-[双(2-氨基乙基)氨基]乙基}吡啶([N3Py]Cl),通过FTIR、1H NMR和MS等测试手段对合成离子液体的结构进行了表征。采用循环伏安法对离子液体配合物[N3Py]Cl/CuBr和有机配合物PMDETA/CuBr的氧化还原电位(E1/2)进行测试,结果表明:合成的离子液体[N3Py]Cl和CuBr形成配合物的氧化还原电势为E1/2=-0.541V,比常用的有机配合物PMDETA/CuBr(E1/2=-0.142V)具有更低的氧化还原电势。将离子液体[N3Py]Cl与CuBr配位形成催化体系,在离子液体[AMIM]Cl中催化甲基丙烯酸甲酯(MMA)的原子转移自由基聚合(ATRP)反应。结果表明,当配体、催化剂和溶剂的用量分别为n(CuBr)=0.19mmol、n([N3Py]Cl)=1.13mmol、n([AMIM]Cl)=0.02mol,反应温度60℃,反应时间4h时,单体转化率高达75%,分子量分布较窄(Mw/Mn=1.24),ATRP反应具有明显的可控性能。  相似文献   

19.
采用十六烷基三甲基溴化铵(CTAB)/正丁醇/环己烷/H2Pt Cl6溶液的微乳液体系制备了非晶态Pt-B/Al_2O_3催化剂,并对催化剂进行了TEM、SAED和XPS表征。以对氯硝基苯(p-CNB)选择加氢反应为探针,考察了微乳液体系中CTAB/正丁醇/环己烷质量比、微乳液体系中水相含量以及制备方法对催化剂加氢性能的影响,并进行了反应动力学研究。催化剂表征及催化加氢性能测试表明:与浸渍法相比,微乳液法制备的催化剂中Pt-B非晶态合金粒子粒径小且分布更加均匀,其p-CNB加氢反应的催化剂活性(以转换频率TOF表示)从0.065 s-1提高到0.166 s-1;当CTAB/正丁醇/环己烷质量比为16∶24∶60,微乳液体系中H2Pt Cl6溶液(w)4%时,单微乳液法制备的催化剂用于p-CNB加氢反应,p-CNB转化率为76.8%,p-CAN选择性为95.9%。动力学研究表明:p-CNB加氢反应近似为一级反应,其表观活化能为29.34 k J/mol。  相似文献   

20.
运用高分辩NMR方法 ,研究了阳离子表面活性剂十六烷基三甲基溴化铵 (CTAB)胶束水溶液、KBr盐溶液对苯甲醇的增溶作用及CTAB/正丁醇 /10 %正辛烷 /水反向微乳液对丙烯酰胺(AM)的增溶作用。结果表明 ,在苯甲醇浓度低时苯甲醇主要增溶于CTAB胶束水溶液或KBr盐溶液的界面层 ,随着增溶物浓度的增大 ,苯甲醇主要增溶于胶束的栅栏层和胶束内核。在CTAB胶束水溶液中 ,当苯甲醇浓度达到 0 35 7(V/V)时 ,它沿烃链的增溶达到饱和 ,并开始进入胶束内核中心 ,并引起CTAB长链亚甲基峰分裂成两个单峰 ,一个在高场 ,一个在低场 ,而在CTAB胶束KBr盐溶液中 ,未得到长链亚甲基的分裂峰。在CTAB油包水 (W /O)微乳液中 ,通过 1H和 13CNMR谱讨论了丙烯酰胺与CTAB和正丁醇的相互作用 ,丙烯酰胺浓度较小时 ,其增溶在微乳液的Stern层 ,当丙烯酰胺与CTAB摩尔比接近 0 75时 ,丙烯酰胺分子增溶到栅栏层 ,并沿CTAB烃链进行分布  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号