首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Alternating pyrolytic carbon/boron nitride (PyC/BN)n multilayer coatings were applied to the KD–II silicon carbide (SiC) fibres by chemical vapour deposition technique to fabricate continuous SiC fibre-reinforced SiC matrix (SiCf/SiC) composites with improved flexural strength and fracture toughness. Three-dimensional SiCf/SiC composites with different interfaces were fabricated by polymer infiltration and pyrolysis process. The microstructure of the coating was characterised by scanning electron microscopy, X–photoelectron spectroscopy and transmission electron microscopy. The interfacial shear strength was determined by the single-fibre push-out test. Single-edge notched beam (SENB) test and three-point bending test were used to evaluate the influence of multilayer interfaces on the mechanical properties of SiCf/SiC composites. The results indicated that the (PyC/BN)n multilayer interface led to optimum flexural strength and fracture toughness of 566.0?MPa and 21.5?MPa?m1/2, respectively, thus the fracture toughness of the composites was significantly improved.  相似文献   

2.
Continuous carbon fiber (Cf) reinforced silicon carbide (SiC) matrix composite (Cf/SiC) was processed through hot pressing (HP) using polycarbosilane (PCS) in matrix and polysilazane in interphase regions as polymer binders. HP experiments were conducted at 4 MPa, 1200 °C and 1 h; followed by PCS polymer impregnation and pyrolysis (PIP) at 1200 °C under vacuum. The BN/SiC-Si3N4 interphase formed on the Cf cloth during BN dispersed polysilazane polymer coating and pyrolysis. The influence of PCS quantity during HP experiments on Cf/SiC composites was studied. Results suggest that sintering of SiC matrix in Cf/SiC composite improves by increasing PCS content during HP; however, high PCS content increases the liquidity of SiC-PCS mixture to flow out of the composite structure. The Cf/SiC composites with relative density ranging from 79 to 83% and flexural strength from 67 to 138 MPa was achieved.  相似文献   

3.
To investigate the correlation of pore geometry and permeation characteristic, this paper evaluated the three-dimensional braided and/or woven carbon fabrics reinforced silicon carbide (3D–Cf/SiC) composites by mercury intrusion porosimetry, scanning electron microscopy and bubble point measurement. The flowrate–pressure curves of N2 through Cf/SiC panels were measured by pressure apparatus at room temperature, then the flow modes conversion were analyzed, and permeability K was calculated. The pore geometry of 3D–Cf/SiC is supposed to be a three dimensional network composed of multi-sized interconnecting chambers, channels and cracks with sizes from microns to nanometers. The permeability prediction by porosity proves that the contents and sizes of the full open inter-bundle channels are the determinant factors for the intrinsic through-flow capability of the composite. The capillary bundle model displays feasibility to predict K when the actual full-open pore size distribution is obtained by appropriate means, such as bubble point method.  相似文献   

4.
Effects of SiC/HfC ratios on the ablation and mechanical properties of 3D Cf/HfC–SiC composites by precursor impregnation and pyrolysis (PIP) process were investigated systematically. Both strength (flexural and compressive strength) and modulus increase as the SiC/HfC ratio are improved. The compact and stiff HfC-SiC matrix in addition to the carbon fiber and PyC interphase with less reaction damage accounts for the improved mechanical properties of Cf/HfC-SiC with higher SiC/HfC ratios. Meanwhile, both weight loss and erosion depth of Cf/HfC-SiC are improved with the increased SiC/HfC ratios. Therefore, in order to balance the ablation and mechanical properties, an appropriate SiC/HfC ratio should be considered.  相似文献   

5.
Making lightweight porous ceramics with excellent permeability applied for transpiration cooling is still challenging. Herein, an ingenious fabrication method is proposed to successfully prepare Cf/SiC(rGO)px/SiC porous ceramics possessing low density, high permeability and satisfactory mechanical properties. The introduction of carbon fibers for constructing channels and SiC(rGO)p with three-dimensional (3D) honeycomb cellular net-like structure, could effectively decrease density and improve porosity. Meanwhile, self-supporting porous skeleton, high open porosity and uniform pores distribution contribute to brilliant permeability of the products. Good interfacial compatibility among SiC(rGO)p, carbon fibers and β-SiC/SiOxCy/Cfree matrix, as well as toughening effects of carbon fibers are beneficial for enhancing fracture toughness and compressive strength. Particularly, Cf/SiC(rGO)p0.6/SiC porous ceramics exhibit low density (1.12 g·cm?3), low linear shrinkage (3.22%), especially high permeability (1.36 ×10?7 mm2), satisfactory fracture toughness (1.77 MPa·m1/2), excellent hardness (3.88 GPa) and compressive strength (6.41 MPa), focusing on potential applications as coolant medium in transpiration cooling.  相似文献   

6.
The chopped carbon fiber reinforced SiC (Cf/SiC) composite has been regarded as one of the excellent high-temperature structural materials for applications in aerospace and military fields. This paper presented a novel printing strategy using direct ink writing (DIW) of chopped fibers reinforced polymer-derived ceramics (PDCs) with polymer infiltration and pyrolysis (PIP) process for the fabrication of Cf/SiC composites with high strength and low shrinkage. Five types of PDCs printing inks with different Cf contents were prepared, their rheological properties and alignment of carbon fiber in the printing filament were studied. The 3D scaffold structures and bending test samples of Cf/SiC composites were fabricated with different Cf contents. The results found that the Cf/SiC composite with 30 wt% Cf content has high bending strength (~ 7.09 MPa) and negligible linear shrinkage (~ 0.48%). After the PIP process, the defects on the Cf/SiC composite structures were sufficiently filled, and the bending strength of Cf/SiC composite can reach up to about 100 MPa, which was about 30 times greater than that of the pure SiC matrix without Cf. This work demonstrated that the printed Cf/SiC composites by using this method is beneficial to the development of the precision and complex high-temperature structural members.  相似文献   

7.
A novel layered structure material, Pr3Si2C2, was synthesized at a low temperature of 850 °C using a molten salt approach for the first time, and subsequently used as the joining filler for carbon fibers reinforced SiC composites (Cf/SiC). A robust near-seamless Cf/SiC joint was successfully obtained at 1509 °C (Ti) for 30 s, while an ultrafast heating rate of 6000 °C/min was applied via electric field-assisted sintering technology. The near-seamless joining process was attributed to the newly precipitated SiC grains, which were densified well with the Cf/SiC matrix by liquid-assisted sintering. The liquid phase was in-situ formed by the eutectic reaction between Pr3Si2C2 and SiC. The shear strength of the near-seamless joint obtained at 1509 °C for 30 s was 17.6 ± 3.0 MPa. The failure occurred in the Cf/SiC matrix. The formation of near-seamless Cf/SiC joints dismisses the issues related to thermal mismatch between Cf/SiC matrices and traditional joining fillers.  相似文献   

8.
Recently, ceramic matrix composites reinforced by short carbon fibers (CFs) attracted increasing attentions. To further improve mechanical properties and oxidation resistances, CFs were subjected to oxidation and acidification followed by sol-gel dip-coating to deposit ZrO2 on their surfaces. ZrO2-Cf/SiC composites were fabricated by joint hot compression molding and sintering, compared to Cf/SiC and SiC prepared by the same method. Microstructural analyses indicated that ZrO2 coatings were successfully deposited on CF surfaces, formed strong bonding and interfaces between CF and the matrix. Meanwhile, CFs were found uniformly distributed in SiC matrix with random orientations. Flexural curves of ZrO2-Cf/SiC and Cf/SiC revealed the presence of “false plasticity” regions after sharp drops, which were quite different from brittle flexural behavior of SiC ceramic. Compression strength of the three samples showed step-up growth. ZrO2-Cf/SiC exhibited the highest value, indicating the introduction of CFs and ZrO2 coatings do have great influence on mechanical performances. After heat treatment, ZrO2-Cf/SiC exhibited better oxidation resistance than Cf/SiC, with weight loss ratios estimated to ??3.76% and ??6.43%, respectively. These improved properties indicated that ZrO2-Cf/SiC would be excellent alternatives to other existence materials under ultra-high temperature environments.  相似文献   

9.
The 3D-Cf/SiC composites fabricated via precursor infiltration and pyrolysis (PIP) are porous inside due to their specific processing. To evaluate the porosity of 3D-Cf/SiC, a novel procedure of mercury intrusion porosimetry (MIP) was adopted to extract information from the hysteresis and entrapment. This method is able to eliminate the temporarily retained Hg at atmospheric pressure from the real entrapment due to topological reasons. From the interpretation of the MIP primary and secondary intrusion–extrusion data, accompanied by scanning electron microscopy (SEM) analysis and bubble point measurement, the pore geometry of 3D-Cf/SiC is supposed to be a 3D network originating from the architecture of braided carbon fabrics. This network is composed of hundreds of micron-sized large chambers between bundles, micro-cracks below 0.1 μm and medium-sized channels about 20–4 μm that bridge the former two and provide passages for fluids permeating the material.  相似文献   

10.
Cf/ZrC‐SiC composites with a density of 2.52 g/cm3 and a porosity of 1.68% were fabricated via reactive melt infiltration (RMI) of Si into nano‐porous Cf/ZrC‐C preforms. The nano‐porous Cf/ZrC‐C preforms were prepared through a colloid process, with a ZrC “protective coating” formed surrounding the carbon fibers. Consequently, highly dense Cf/ZrC‐SiC composites without evident fiber/interphase degradation were obtained. Moreover, abundant needle‐shaped ZrSi2 grains were formed in the composites. Benefiting from this unique microstructure, flexural strength, and elastic modulus of the composites are as high as 380 MPa and 61 GPa, respectively, which are much higher than Cf/ZrC‐SiC composites prepared by conventional RMI.  相似文献   

11.
The effect of single-layer pyrocarbon (PyC) and multilayered (PyC/SiC)n=4 interphases on the flexural strength of un-coated and SiC seal-coated stitched 2D carbon fiber reinforced silicon carbide (Cf/SiC) composites was investigated. The composites were prepared by I-CVI process. Flexural strength of the composites was measured at 1200 °C in air atmosphere. It was observed that irrespective of the type of interphase, the seal coated samples showed a higher value of flexural strength as compared to the uncoated samples. The flexural strength of 470 ± 12 MPa was observed for the seal coated Cf/SiC composite samples with multilayered interphase. The seal coated samples with single layer PyC interphase showed flexural strength of 370 ± 20 MPa. The fractured surfaces of tested samples were analyzed in detail to study the fracture phenomena. Based on microstructure-property relations, a mechanism has been proposed for the increase of flexural properties of Cf/SiC composites having multilayered interphase.  相似文献   

12.
A novel method has been developed to fabricate carbon fiber reinforced SiC (Cf/SiC) composites by combining 3D printing and liquid silicon infiltration process. Green parts are firstly fabricated through 3D printing from a starting phenolic resin coated carbon fiber composite powder; then the green parts are subjected to vacuum resin infiltration and pyrolysis successively to generate carbon fiber/carbon (Cf/C) preforms; finally, the Cf/C preforms are infiltrated with liquid silicon to obtain Cf/SiC composites. The 3D printing processing parameters show significant effects on the physical properties of the green parts and also the resultant Cf/C preforms, consequently greatly affecting the microstructures and mechanical performances of the final Cf/SiC composites. The overall linear shrinkage of the Cf/SiC composites is less than 3%, and the maximum density, flexural strength and fracture toughness are 2.83?±?0.03?g/cm3, 249?±?17.0?MPa and 3.48?±?0.24?MPa m1/2, respectively. It demonstrates the capability of making near net-shape Cf/SiC composite parts with complex structures.  相似文献   

13.
To improve the mechanical properties of carbon fibers/lithium aluminosilicate (Cf/LAS) composites, Cf/LAS with in-situ grown SiC nanowires (SiCnw-Cf/LAS) were prepared by chemical vapor phase reaction, precursor impregnation, and hot press sintering, consecutively. The effect of multi-scaled reinforcements (micro-scaled Cf and nano-scaled SiCnw) on the mechanical properties was investigated. The phase composition, microstructure and fracture surface of the composites were characterized by XRD, Raman Spectrum, SEM, and TEM. The morphology of SiCnw has a close relation with the content of Si. Microstructure analysis suggests that the growth of SiC nanowires depends on the VLS mechanism. The multi-scale reinforcement formed by Cf and SiCnw can significantly improve the mechanical properties of Cf/LAS. The bending strength of SiCnw-Cf/LAS reaches to 597 MPa, achieving an increase of 19% to Cf/LAS. Moreover, the samples show a maximum fracture toughness of 11.01 MPa m1/2, achieving an increase of 46.4% to Cf/LAS. Through analysis of the fracture surface, the improved mechanical properties could be attributed to the multi-scaled reinforcements by the pull-out and debonding of Cf and SiCnw from the composites.  相似文献   

14.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

15.
The wettability and infiltration of molten ZrSi2 and ZrSi2-Lu2O3 alloys into Cf/SiC and B4C-infiltrated Cf/SiC composites were investigated to understand the interfacial interactions that occur during the development of Cf/SiC-ZrC and Cf/SiC-ZrB2-ZrC-Lu2O3 materials. A significant evaporation of Si from the liquid affected the wetting behaviour of the alloy when tested in a vacuum at 1670 °C. The better wetting and spreading of the alloy over the surface was observed for the composites with lower overall porosity (12 %). On the other hand, the formation of an outer dense layer, followed up by the uniform infiltrated region up to ~ 1 mm was observed for the Cf/SiC with higher porosity (21 %). The infiltrated alloy reacted with SiC matrix to form ZrC or with B4C-infiltrated SiC matrix to form ZrB2-ZrC-SiC. The Lu2O3 particles were not wetted by the melt, and were pushed away of the reaction zone by the solidification front.  相似文献   

16.
The NiPdPtAu-Cr filler alloy was proposed for joining Cf/SiC composites. The wettability on Cf/SiC composite was studied by the sessile drop method at 1200 °C for 30 min. Under the brazing condition of 1200 °C for 10 min, the Cf/SiC-Cf/SiC joint strength was only 51.7 MPa at room temperature. However, when used a Mo layer, the Cf/SiC-Mo-Cf/SiC joint strength was remarkably increased to 133.2 MPa at room temperature and 149.5 MPa at 900 °C, respectively. At the interface between Cf/SiC and Mo, Mo participated in interfacial reactions, with the formation of Cr3C2/Mo2C reaction layers at the Cf/SiC surface. The improvement in the joint strength should be mainly attributed to the formation of MoNiSi. The Cf/SiC-Mo joint strength was 86.9 MPa at room temperature and 73.7 MPa at 900 °C, respectively. After 10 cycles of thermal shock test at 900 °C the Cf/SiC-Mo joint strength of 71.6 MPa was still maintained.  相似文献   

17.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   

18.
A novel surface honeycomb modification was developed by pre-oxidizing the Cf/SiC composite, and the honeycomb modified Cf/SiC composite and stainless steel were brazed with AgCuTi filler. Results showed that a honeycomb-like surface with dense pores could be obtained when the Cf/SiC composite was air-oxidized at 700°C. During the brazing process, the liquid filler infiltrated into the pores and formed an infiltrated area, which not only significantly increased the bonding area between the reaction layer and the Cf/SiC composite, but also effectively hindered the crack propagation due to the nailing/pinning effect. The Finite Element simulation displayed that the infiltrated area transferred the stress concentration away from the reaction layer, dispersed the residual stress and reduced the corresponding stress value. As the result, the maximum shear strength of the joint reached 158MPa, which is multiple times higher than the joint without surface honeycomb modification.  相似文献   

19.
《Ceramics International》2022,48(7):9483-9494
In this work, quasi-isotropic chopped carbon fiber-reinforced pyrolytic carbon and silicon carbide matrix (Cf/C–SiC) composites and chopped silicon carbide fiber-reinforced silicon carbide matrix (SiCf/SiC) composites were prepared via novel nondamaging method, namely airlaid process combined with chemical vapor infiltration. Both composites exhibit random fiber distribution and homogeneous pore size. Young's modulus of highly textured pyrolytic carbon (PyC) matrix is 23.01 ± 1.43 GPa, and that of SiC matrix composed of columnar crystals is 305.8 ± 9.49 GPa in Cf/C–SiC composites. Tensile strength and interlaminar shear strength of Cf/C–SiC composites are 52.56 ± 4.81 and 98.16 ± 24.62 MPa, respectively, which are both higher than those of SiCf/SiC composites because of appropriate interfacial shear strength and introduction of low-modulus and highly textured PyC matrix. Excellent mechanical properties of Cf/C–SiC composites, particularly regarding interlaminar shear strength, are due to their quasi-isotropic structure, interfacial debonding, interfacial sliding, and crack deflection. In addition to the occurrence of crack deflection at the fiber/matrix interface, crack deflection in Cf/C–SiC composites takes also place at the interface between PyC–SiC composite matrix and the interlamination of multilayered PyC matrix. Outstanding mechanical properties of as-prepared Cf/C–SiC composites render them potential candidates for application as thermal structure materials under complex stress conditions.  相似文献   

20.
Three-dimensional carbon fiber-reinforced SiC matrix composites (Cf/SiC) were fabricated by vapor silicon infiltration (VSI) successfully. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and wavelength dispersive spectrometer (WDS) analysis revealed that the microstructure and composition of constituent phases are strongly dependent on temperature. At 1973 K, the obtained Cf/SiC composite mainly consists of SiC, carbon fiber and residual Si, and shows a densified microstructure. The flexural tests show non-catastrophic fracture behavior for composites fabricated by VSI process, and the ultimate flexural stress is comparable to those of composites fabricated by other processing techniques, demonstrating VSI is an effective way to fabricate the dense Cf/SiC composites with good mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号