首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
萃取脱酚是煤气化废水近零排放流程中的关键单元,萃取剂的选择是有毒二元酚资源化回收的关键步骤。工业中使用的优良脱酚萃取剂MIBK(甲基异丁基甲酮)能很好地脱除单元酚,但对于二元酚,其萃取分配系数依然较低;本文以DECHEMA数据库,通过筛选规则,以UNIFAC模型和紫外可见吸收曲线为基础,协萃系数为混合萃取剂性能指标来寻找与MIBK有协同效应的协萃剂,以提高其对二元酚的萃取性能,最终确定了新型复合萃取剂。  相似文献   

2.
钱宇  周志远  陈赟  余振江 《化工学报》2010,61(7):1821-1828
煤气化工艺中产生的洗气废水含有酚氨等高浓度难降解有机污染物。工业上采用化工分离和生化处理两段法来依次实现回收酚氨和净化排放。现有工艺中酚回收效率较低,难以保证进入生化工艺段的水质,影响最终排放。本文研究发现:萃取剂的选择和分离序列对萃取过程的pH值及随之对脱酚效率的影响极大。本文将脱氨装置单元前置,提出了精馏汽提塔侧线脱氨技术,将废水的pH值从10.5降到6.5,使萃取在偏酸条件下进行。采用甲基异丁基甲酮(MIBK)替代原有的二异丙醚(DIPE)萃取剂,显著提高了对多元酚的分配系数,总酚萃取效率从76%提升到93%。以上新流程已在某大型煤化工企业3200t.d-1煤气化污水化工分离系统中得以成功改造实施。新流程的实施提高了有机污染物的脱除率,为后续的生化处理工艺的达标排放奠定了基础。  相似文献   

3.
煤气化污水化工处理新流程   总被引:2,自引:1,他引:1  
针对鲁奇加压气化工艺产生的煤气化污水处理现有流程特点提出一种新的化工处理过程,并实现了工业化.分别介绍煤气化污水化工流程处理的新老过程.新流程中,采用酸水汽提塔同时脱除煤气化污水中的氨气和酸性气体,氨气脱除后的煤气化污水pH值由原先的9~11降低至7以下,有利于后续溶剂萃取脱酚.而萃取溶剂甲基异丁基甲酮(MIBK)相比二异丙醚(DIPE)对污水中单元酚和多元酚有更高的分配系数,MIBK的萃取应用将从污水中回收更多的酚类成分,从而在煤气化污水生化处理前COD能进一步降低.  相似文献   

4.
针对碎煤加压气化产生的含酚废水在萃取脱酚过程中萃取效率不高的问题,探讨了酚氨回收装置影响萃取脱酚因素及控制要点,提出了酚氨回收装置萃取流程改进及提高萃取效率的措施。结果发现,在萃取pH较低、萃取相比较大的情况下有利于萃取,适当降低萃取塔负荷和原料水油含量,改造萃取塔填料,可有效提高装置的处理能力和萃取塔萃取效率,并降低溶剂消耗及运行成本。  相似文献   

5.
针对甲基异丁基甲酮(MIBK)和异丙醚(DIPE)两种萃取剂以及在不同剂溶比时萃取苯酚羟化液的萃取效果进行了比较;并进一步采用磷酸三丁酯(TBP)为配合剂、甲基异丁基甲酮(MIBK)为稀释剂研究了苯酚羟化液的配合萃取.结果表明:MIBK的萃取效果优于DIPE,MIBK为萃取剂时的最优剂溶比为1:3,此时苯酚羟化液的三级错流萃取率可达99%发上.通过MIBK对羟化液的多级错流萃取过程模拟计算进一步验证了此结论.采用TBP络合萃取苯酚羟化液,实验表明,萃取率可达到99.76%.  相似文献   

6.
《化学工程》2016,(2):7-11
劣质煤在400—1 000℃处理过程中会产生高浓含酚废水,工业上可行的方法是采用酚氨回收技术对废水中有价值物质回收利用,而后将其送入后续生化处理阶段进一步处理,其中溶剂萃取是酚氨回收的关键环节。文中针对高浓含酚废水的特点,选择甲基正丁基甲酮(MBK)作为萃取脱酚溶剂,并对MBK萃取性能进行了研究。实验结果表明:MBK是一种优异的脱酚萃取剂,对挥发酚和非挥发酚都具有很好的萃取效果。在此基础上,探究了MBK最佳萃取脱酚条件,研究了温度、p H值、相比等对脱酚效果的影响。三级错流萃取实验中,用MBK做萃取剂,相比(体积比)R=1∶5,温度为40℃,p H=8.0时,可将废水中总酚质量浓度从12 700 mg/L降低到300 mg/L。实验数据可为MBK萃取脱酚的工业化实施提供参考。  相似文献   

7.
为解决某企业兰炭废水酚氨回收装置运行过程中出现的COD和总酚去除效果差、运行不稳定和副产品品质不合格等问题,分析了原有装置的运行情况和问题的产生原因,针对性地进行了循环氨水系统改造,并新增聚结过滤器+高精度油水分离器改造除油单元,新增脱酸单元及相关配套塔器改造脱氨单元,用甲基异丁基甲酮(MIBK)替代原有的萃取剂,并新增相关配套塔器改造脱酚单元。运行情况表明,改造后装置的出水水质为pH=6.68,NH4+-N、COD、总酚、总油分别为89、2 265、490、32 mg/L,不仅有效地改善了后续生化装置的运行工况,产出合格副产品,而且显著提高了运行的经济性和稳定性,解决了企业的兰炭废水处理难题。  相似文献   

8.
《煤化工》2017,(2):31-34
对异丙醚、乙酸异丙酯和甲基异丁基酮(MIBK)3种溶剂进行了模拟酚水和实际酚水的萃取实验,结果表明,对于模拟酚水中的酚类萃取率,MIBK最高,乙酸异丙酯略低于MIBK,异丙醚最低;对实际酚水进行三级逆流萃取,当相比为1:6~1:8时,MIBK和乙酸异丙酯对酚的萃取率均大于96.9%,高于异丙醚对酚的萃取率。综合考虑,乙酸异丙酯在回收耗能和价格等方面具有一定的优势,可以代替MIBK和异丙醚作为处理含酚废水的萃取剂。  相似文献   

9.
废水处理问题是限制煤制天然气发展的主要问题,其中酚氨回收单元是影响整个废水处理流程平稳运行的关键因素。本文主要介绍了3种已工业化的酚氨回收工艺,通过分析酚氨回收工艺,发现酚氨回收单元主要存在以下几个共性问题:①总氨脱除效率低,氨产品中酚含量高;②萃取脱酚效率低。拟通过单元优化和工艺改造两方面对上述问题进行解决,因此对酚氨回收工艺提出了相应的优化方案:①增加脱氨塔塔底再沸器的加热负荷,在脱氨单元加入足量或过量的稀碱液,增加脱氨塔塔板与塔顶之间的距离以及在氨精制单元降低第三级分凝罐的操作温度和增设碱洗罐;②寻求高效的萃取剂,在萃取塔之前增设CO2吸收塔。研究表明,上述优化方案有效地提高了总氨脱除率,降低了氨产品中酚含量,并提高了萃取剂的脱酚效率。  相似文献   

10.
《应用化工》2022,(4):961-964
以甲基异丁基甲酮(MIBK)为萃取剂,研究了3种含酚废水的萃取工艺,考察了萃取级数﹑萃取相比﹑萃取温度对萃取率的影响。结果表明,随萃取级数增大,3种含酚废水的萃取率均先迅速上升后基本保持恒定,萃取级数到5级时萃取率已基本稳定;随着萃取相比的减小,3种含酚废水的萃取率均在下降;随温度上升,3种含酚废水的萃取率基本呈下降趋势,温度对苯酚废水的萃取率影响不大,但对间苯二酚废水﹑苯酚-间苯二酚废水萃取率的影响较大。对于苯酚废水的最优萃取工艺条件为:萃取级数为6级,萃取相比为1∶3,萃取温度为40℃;对于间苯二酚废水的最优萃取工艺条件为:萃取级数为4级,萃取相比为1∶4,萃取温度为30℃。  相似文献   

11.
陈赟  王卓 《煤化工》2013,41(4):44-48
介绍了国内煤气化污水酚氨回收的3种化工处理流程:(1)脱酸、再萃取脱酚、而后脱氨及溶剂回收工艺;(2)脱酸脱氨后、萃取脱酚及溶剂回收工艺;(3)酸化后萃取脱酚、再脱酸脱氨及溶剂回收工艺。并对这3种工艺流程进行了分析对比,前两种工艺流程已有大量工业实例,第3种工艺仍停留在研发阶段。工艺过程换热网络优化与集成、新型萃取剂的开发是今后煤气化污水技术的研发重点。  相似文献   

12.
溶剂萃取法处理苯酚稀溶液及其废水的研究   总被引:28,自引:0,他引:28  
为探索工业含酚废水处理的适宜萃取剂,选用具有物理萃取和络合萃取作用的两类萃取剂正辛醇、甲基异丁基甲酮(MIBK)和磷酸三丁酯(TBP)(以煤油为稀释剂)进行了苯酚稀溶液萃取性能的实验研究。测定了不同溶液pH值、初始苯酚浓度和TBP浓度条件下的萃取平衡数据,分析了各萃取剂萃取平衡的规律及机理。结果表明,虽然各萃取剂的萃取机理不同,但在酸性和中性范围内都可获得较大的萃取平衡分配系数,所以,这三种萃取剂的适宜pH值操作条件为酸性和中性,且在稀溶液的范围内溶剂的萃取能力为TBP > MIBK >正辛醇,而在极稀的苯酚浓度条件下(<20mgL-1),则为正辛醇> TBP > MIBK。同时,正辛醇、TBP处理工业含酚废水的错流萃取实验表明,若考虑通过单一的萃取方法使得废水中苯酚的浓度达到国家排放标准(0.5mgL-1),正辛醇为适宜的萃取剂。  相似文献   

13.
王成  叶枫  季东 《当代化工》2014,(2):270-273
针对某煤气化厂酚回收工艺流程净化废水中酚含量未达到生化处理要求的问题,分析认为主要是由于原萃取剂二异丙基醚(DIPE)对酚分配系数过低。然后以对酚的分配系数更高的甲基异丁基酮(MIBK)为萃取剂,重新设计工艺流程并确定新流程的工艺参数同时对其进行模拟计算,结果显示,净化废水酚含量降至362mg/L,能够满足后续生化段要求;与原流程相比,新流程的粗酚回收量约多0.96 t/d。新旧流程经济核算表明,采用MIBK为萃取剂的流程处理每吨水的价格比DIPE为萃取剂低1.6元。  相似文献   

14.
将磷酸三丁酯(TBP)与甲基异丁基甲酮(MIBK)混合用作萃取净化湿法磷酸的萃取剂,并针对TBP与MIBK的互溶性以及TBP+MIBK(简称为TM)萃取磷酸的相平衡进行了研究,测定了10~50℃时的纯TBP和MIBK的溶解度参数以及25℃和50℃下,TBP质量分数为10%~90%的TM/H3PO4/H2O三元体系相平衡数据。结果表明:TBP与MIBK的溶解度参数非常接近,温度对其影响很小,二者可以在任意温度下完全互溶;温度对TM萃取磷酸的萃取平衡影响不大,TM的组成对磷酸的萃取平衡有一定影响,TBP含量越高,萃取范围越宽;相反,萃取范围越窄,其萃取范围介于纯MIBK和纯TBP萃取磷酸之间。该研究结果为进一步研究TM萃取净化湿法磷酸奠定了理论基础。  相似文献   

15.
采用新的工艺方法即单塔加压汽提装置处理鲁奇炉煤制气过程中洗涤粗煤气所产生的含高浓度酚及氨等生产污水。该装置工作原理是在较高的温度下H2S、NH3都以游离的分子状态存在于液相中,在热料减压闪蒸和塔底蒸汽的汽提作用下,液相中的H2S、NH3分子由液相转入汽相实现汽提,将污水中的CO2、H2S等酸性气体和氨在同一个加压塔内脱除。处理后的污水进入后续的萃取装置,萃取剂是甲基异丁基酮(MIBK),MIBK对单元酚和多元酚分配系数都较高,萃取效果好,且萃取剂用汽提的方式回收后可再利用。处理后的污水酚、氨、硫化氢及pH值都有显著降低,不仅显著降低了生产成本而且给污水的后续生化处理提供了方便。该方法实践证明对处理鲁奇炉生产污水非常有效。  相似文献   

16.
煤化工废水成份复杂,尤其含酚量较高,处理较困难,应选择有针对性的处理方法。探讨了煤化工废水的萃取脱酚工艺,并对工艺参数进行了优化。结果表明,MIBK萃取剂对煤化工废水萃取脱酚具有良好的效果;试验确定萃取级数为5级,萃取相比R=1∶4,萃取温度t=45℃~55℃;最佳实验条件下,总酚和COD的去除率分别为94.5%和97.5%。  相似文献   

17.
以MIBK为萃取剂,分别对苯酚和邻甲基苯酚进行萃取,考察了酚类浓度和萃取温度对萃取的影响。结果表明,MIBK对苯酚和邻甲基苯酚都有较好的萃取效果,室温下,对苯酚的分配系数达78. 1,对邻甲基苯酚的分配系数则达252. 7;随温度升高,MIBK对苯酚和邻甲基苯酚的萃取效果皆有较大下降,从298K升到343K,分配系数分别下降到35. 6和105. 8。综合来看,MIBK是一种性能优良的脱酚萃取剂。  相似文献   

18.
煤化工企业生产过程会产生大量的废水,这类废水含有大量的酸性气、酚、氨等有毒有害物质,要想使废水达标排放,必须将废水经过萃取脱酚,然后进行生化处理。萃取剂对脱酚过程的影响较大,为了选择合适的萃取剂,建立最优的萃取流程,对不同萃取剂脱酚流程进行模拟研究,这些萃取剂包括二异丙基醚、乙酸异丙酯和甲基异丁基酮。对比了不同萃取剂的脱酚效果、工艺条件和能耗等,结果同实际生产数据规律一致,研究方法准确。结果为含酚废水的脱酚处理提供了理论依据。  相似文献   

19.
基于固定床气化废水的3种物理萃取脱酚技术存在的问题,提出了新型萃取脱酚技术——络合萃取脱酚,研究了不同络合萃取剂的脱酚效果及溶剂回收效果,分析了2种萃取技术的脱酚效果及经济成本。研究结果表明:物理萃取剂对多元酚的萃取率普遍低于80%,而络合萃取剂对多元酚的萃取效果均大于85%,络合萃取剂在水中的损失率(0.1%)普遍低于物理萃取剂(0.87%),络合萃取剂的回收采用碱洗方式,同时络合萃取技术的经济成本(20元/t)低于物理萃取的经济成本(30~40元/t)。  相似文献   

20.
《化学工程》2017,(7):27-31
为提高煤气化酚水酚类物质的回收率,研究一种新的萃取剂——乙酸异丙酯。从分配系数、pH值、萃取比、水解反应(包括水解反应速率及其动力模型)等方面研究其萃取性能。实验结果显示乙酸异丙酯对酚类的萃取效果高于异丙醚,略低于甲基异丁基甲酮(MIBK)。从工业运行角度考虑,比较理想的萃取工艺条件:萃取温度30—60℃,pH值8.3—8.5,萃取比1∶6—1∶8,萃取级数为三级。对比不同pH值,温度下乙酸异丙酯的分解速率及碱性条件下的水解动力学,发现乙酸异丙酯的水解量较小,相对于挥发损失可不必考虑。因此乙酸异丙酯是一种可替代的酚类萃取剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号