首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
State estimation of biological process variables directly influences the performance of on-line monitoring and op-timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CKF (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-line state estimation for fermentation process can be achieved by the proposed method with higher esti-mation accuracy and better stability.  相似文献   

2.
一类非线性时滞过程的主动容错控制   总被引:6,自引:0,他引:6  
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor biaz, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a “soft sensor“, which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.  相似文献   

3.
A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness.  相似文献   

4.
An iterative optimization strategy is proposed and applied to the steady state optimizing control of the bio-dissimilation process of glycerol to 1,3-propanediol in the presence of model-plant mismatch and input constraints. The scheme is based on the Augmented Integrated System Optimization and Parameter Estimation (AI- SOPE) technique, but a linearization of some performance function in the modified model-based optimization problem of AISOPE is introduced to overcome the difficulty of determining an appropriate penalty parameter. When carrying out the iterative optimization, the penalty coefficient is set to a larger value at the current iteration than at the previous iteration, which can promote the evolution rate of the iterative optimization. Simulation studies illustrate the potential ofthe approach presented for the optimizing control of the bioTdissimilation process of glycerol to 1,3-propanediol. The effects of measurement noise, measured and unmeasured disturbances on the proposed algorithm are also investigated.  相似文献   

5.
Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined by coking condition of the transfer line exchangers (TLE) when naphtha or other heavy hydrocarbon feedstocks are cracked. In practice, it is difficult to measure the coke thickness in TLE through experimental method in the complex industrial situation. However, the outlet temperature of TLE (TLEOT) can indirectly characterize the coking situation in TLE since the coke accumulation in TLE has great influence on TLEOT. Thus, the TLEOT could be a critical factor in deciding when to shut down the furnace to decoke. To predict the TLEOT, a paramewic model was proposed in this work, based on theoretical analysis, mathematic reduction, and parameters estimation. The feasibility of the proposed model was further checked through industrial data and good agreements between model prediction and industrial data with maximum deviation 2% were observed.  相似文献   

6.
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.  相似文献   

7.
In this study, Saccharomyces cerevisiae (baker’s yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.  相似文献   

8.
On-line estimation of unmeasurable biological variables is important in fermentation processes, directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product. In this study, a novel strategy for state estimation of fed-batch fermentation process is proposed. By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model, a state space model is developed. An improved algorithm, swarm energy conservation particle swarm optimization (SECPSO), is presented for the parameter identification in the mechanistic model, and the support vector machines (SVM) method is adopted to establish the nonlinear measurement model. The unscented Kalman filter (UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process. The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.  相似文献   

9.
Semiconductor fabrication is a manufacturing sequence with hundreds of sophisticated unit operations and it is always challenged by strategy development for ensuring the yield of defect-free products. In this paper, an advanced control strategy through integrating product and process control is established. The proposed multiscale scheme contains three layers for coordinated equipment control, process control and product quality control. In the upper layer, online control performance assessment is applied to reduce the quality variation and maximize the overall product performance (OPP). It serves as supervisory control to update the recipe of the process controller in the middle layer. The process controller is designed as an exponentially weighted moving average (EWMA) run-to-run controller to reject disturbances, such as process shift, drift and tool worn out, that are exerted to the op-eration. The equipment in the process is individually controlled to maintain its optimal operational status and maximize the overall equipment effectiveness (OEE), based on the set point given by the process controller. The ef-ficacy of the proposed integrated control scheme is demonstrated through case studies, where both the OPP (for product) and the OEE (for equipment) are enhanced.  相似文献   

10.
Nonlinear model predictive control (NMPC) is an appealing control technique for improving the per- formance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim- plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The method is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.  相似文献   

11.
基于多变量SFPC的油水分离时滞控制过程分析   总被引:2,自引:0,他引:2  
应用状态反馈预测控制算法,对带有耦合、不确定性的油田联合站油水分离控制过程进行分析,给出基于状态反馈的电脱水系统的多变量适应式SFPC算法;基于Lyapunov稳定性理论,对时滞过程进行分分析,推导出多变量线性时滞系统的时滞独立稳定充分条件方程式。在此基础上,给出几个判定线性时滞系统独立稳定的简单判据。讨论时滞系统的指数稳定性,给出系统具有任意指定收敛速度指数稳定的充分条件及相应的推论。  相似文献   

12.
In this paper, a simple adaptive control strategy is suggested for temperature tracking control of batch processes. A nonlinear controller, which is in structure very simple and consists of a single parameter, is proposed. To enable this controller to control a batch process adaptively, a simple parameter tuning algorithm is derived based on the Lyapunov stability theorem. The proposed adaptive control scheme is directly operational, which does not depend on process model and the only a priori process information required is the system response direction. To demonstrate the effectiveness and applicability of the proposed scheme, illustrative examples are provided. Extensive simulation results reveal that the proposed adaptive control strategy appears to be a simple and effective approach to batch process control, which provides robust control despite the wide range of operating conditions and nonlinear dynamics of the system.  相似文献   

13.
Economic model predictive control (EMPC) is a feedback control method that dictates a potentially dynamic (time‐varying) operating policy to optimize the process economics. The objective function used in the EMPC system may be a general nonlinear function that describes the process/system economics. As this function is not derived on the sole basis of classical control considerations (stabilization, tracking, and optimal control action calculation) but rather on the basis of economics, selecting the appropriate control configuration, and quantifying the influence of a given input on an economic cost is an important task for the proper design and computational efficiency of an EMPC scheme. Owing to these considerations, an input selection methodology for EMPC is proposed which utilizes the relative degree and the sensitivity of the economic cost with respect to an input to identify and select stabilizing manipulated inputs with the most dynamic and steady‐state influence on the economic cost function to be assigned to EMPC. Other considerations for input selection for EMPC are also discussed and integrated into a proposed input selection methodology for EMPC. The control configuration selection method for EMPC is demonstrated using a chemical process example. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3230–3242, 2014  相似文献   

14.
延迟焦化工艺是目前渣油深度加工的首要手段,通过对延迟焦化装置存在的高温硫腐蚀、低温酸性腐蚀、环烷酸腐蚀和冲蚀等几种主要腐蚀类型的反应机理进行分析,并结合某分公司延迟焦化装置的原料性质和主要操作参数,提出了延迟焦化装置隐患整改项目中主要管道的材料选用方案.  相似文献   

15.
In coking process, the production quality, equipment life, energy consumption, and process safety are all influenced by the pressure in gas collector pipe of coke oven, which is frequently influenced by disturbances. The main control objectives for the gas collector pressure system are keeping the pressures in collector pipes at appropriate operating point. In this paper, model predictive control (MPC) strategy is introduced to control the collector pressure system due to its ability to handle constraint and good control performance. Based on a method proposed to simplify the system model, an extended state space model predictive control is designed, which combines the feedforward strategy to eliminate the disturbance. The simulation results in a system with two coke ovens show the feasibility and effectiveness of the control scheme.  相似文献   

16.
先进控制技术在延迟焦化装置的应用   总被引:3,自引:2,他引:1  
以某厂延迟焦化装置为工业应用背景,在焦化反应机理模型的基础上,对控制目标、主要变量选择、约束条件、控制器结构等方面进行详细的分析,设计了延迟焦化装置的先进过程控制系统。工业实际应用表明:先进控制系统投运后,整个生产过程的平稳性和控制精度得到了明显的改善。  相似文献   

17.
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network (NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.  相似文献   

18.
The control of tubular fixed-bed reactors with highly exothermic reactions is approached from a passivity-based control perspective. The proposed controller solves dynamic tracking of the reactor exit conversion and stabilization of the reactor temperature by exploiting the passivity properties of the process. The model-based control structure proposed in this paper provides a suitable framework for developing the passivity-based control law and the state predictor. The integrated controller is designed and its performance in the face of parameter variation and model uncertainty is tested by numerical simulation. Digital simulation on an industrial phthalic anhydride fixed-bed reactor shows that the proposed control scheme can give satisfactory dynamic tracking ability and disturbance rejection performance, which is robust in the presence of process variation and model uncertainty. This paper provides a basic insight into the characterization and solution of control problems that are particular to tubular fixed-bed reactor systems and constitutes the application of passivity-based control theory to complex chemical processes.  相似文献   

19.
A nonlinear unsteady state optimal control problem for a classical, constant diameter ethane thermal cracking reactor is formulated and solved. The process is represented by a pseudo steady state mathematical model, consisting of mass and heat balance, pressure drop, and coking equations. The performance index is of an economical nature, representing the global benefit of reactor operation over a constant operating time. As control variables, the space and time dependent skin tube temperature, the time dependent steam to hydrocarbon ratio, and the time dependent feed flow rate were considered. The results are in agreement with the process physicochemical and technological fundamentals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号