首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
收集总结分析了现有的甲醇层流火焰速度的实验数据,比较了三种典型的描述甲醇氧化的详细化学反应机理(Li机理、USC Mech-Ⅱ和Burke机理)对层流火焰传播速度的预测精度。结果表明三种机理均能定性反映甲醇层流火焰速度的变化规律,但在富燃料侧,机理计算值明显高于实验结果。反应动力学分析表明甲醇脱氢反应对层流火焰速度的影响至关重要。根据文献中的最新成果,修正了Li机理中甲醇脱氢反应的速率常数,提高了Li机理对甲醇-空气层流火焰速度的预测精度。针对工程需求,给出了两个甲醇层流火焰速度的快速预测模型,经过校核,所提出的预测模型能够较为准确地预测不同初始温度和压力下甲醇层流火焰速度。  相似文献   

2.
含颗粒甲烷/空气预混燃烧的51步简化机理   总被引:1,自引:0,他引:1  
基于含颗粒甲烷燃烧详细化学动力学机理Gri-Mech3.0,采用层流预混火焰模型计算含颗粒甲烷/空气预混燃烧过程。通过对详细机理的计算结果进行敏感性分析以及产物速度分析提取骨干机理,再根据准稳态假设进一步简化,最终得到一套包含27种组分和51个基元反应的简化机理。将该51步简化机理与详细机理进行对比,结果表明:该简化机理在预测燃烧速度方面具有较高精度,能够在较大热力学参数变化范围内较好地预测含颗粒和不含颗粒2种情况的甲烷/空气预混燃烧现象。  相似文献   

3.
研究了在三种不同醇溶剂(甲醇、异丙醇和仲丁醇)水溶液中TS—l催化丙烯过氧化氢环氧化反应的本征动力学,反应条件为温度30~60℃,丙烯压力0.4-0.6MPa。根据实验现象和各组分在TS-1上的吸附特点建立了该反应的Eley-Rideal机理模型,环氧化反应在吸附态的H2O2分子与游离态的丙烯分子之间进行,表面反应为速度控制步骤。通过实验数据对机理模型进行了参数估值,检验结果表明拟合效果较好,平均偏差在10%以内。最后对过程进行了进一步讨论,为该过程的工业化提供了依据。  相似文献   

4.
利用PREMIX程序对预混层流正庚烷/甲醇一维自由传播火焰进行了数值模拟。计算了不同初始压力、初始温度以及不同甲醇掺混比例下正庚烷/甲醇二元燃料的层流火焰速率。研究表明:正庚烷/甲醇二元燃料的层流火焰速率随初始压力的升高而减小,随初始温度的升高而增大,随甲醇掺混比例的升高而增大,但增幅较小。研究对关键组分进行进一步分析,从化学反应动力学角度揭示了层流火焰速率变化的原因。  相似文献   

5.
张尊华  曾璇  梁俊杰  王昭军  李格升 《化工学报》2018,69(12):5209-5219
利用定容燃烧弹试验平台和CHEMKIN PRO气相化学动力学软件,研究了常温常压和化学计量比下天然气成分变化对其层流燃烧速度和火焰不稳定性的影响规律。结果表明,天然气的层流燃烧速度随乙烷、丙烷和正丁烷含量的增加而上升,且乙烷的影响效果最为显著。天然气-空气火焰的不稳定性随着乙烷、丙烷和正丁烷含量的增加而降低,正丁烷对火焰综合不稳定性的抑制能力与丙烷相近,且都强于乙烷。火焰结构分析表明,天然气成分波动时H基浓度峰值的变化最为显著,天然气的层流燃烧速度与火焰中OH基和H基浓度之和的最大值之间有较强的相关性。层流燃烧速度敏感性分析和净反应速率分析表明,天然气成分变化会影响其燃烧过程中重要基元反应的进行,通过正影响的基元反应和负影响的基元反应之间的竞争,火焰中H基的浓度峰值发生变化,乙烷含量变化对H基浓度的影响最大。  相似文献   

6.
合成气稀释燃烧是燃气轮机高效低污染燃烧的重要运行方式。本文以CO2、H2O和N2为稀释气体,利用数值模拟方法研究稀释比对不同压力下合成气(CO/H2/CH4)层流火焰速度(SL)的影响规律,并从自由基浓度变化、敏感性数值和生成速率(rate of production,ROP)三个方面解析三种气体的物理和化学作用机理。结果表明,SL随燃烧压力和稀释比的增大而不断减小,其中CO2对层流火焰速度的抑制最为显著。稀释气体的物理效应对层流火焰速度的影响远大于化学效应,但CO2和H2O的化学效应不能忽略。化学效应则是通过改变H和OH自由基浓度影响SL,其中CO2稀释降低H和OH自由基浓度,H2O稀释则是降低H自由基浓度,从而降低合成气的层流火焰速度。进一步反应动力学分析发现了H/OH浓度变化在低压、加压下的主要化学反应路径,且受H2O稀释的化学反应速率对压力较CO2更为敏感。  相似文献   

7.
研究了甲醇、异丁烯和甲基叔丁基醚 (MTBE)在HBT6分子筛上的吸附 ,探讨了HBT6分子筛催化剂上合成MTBE反应的机理 ,并结合本征动力学实验结果 ,提出了反应的机理动力学模型 .结果表明 ,甲醇、异丁烯、MTBE均吸附在催化剂的酸性OH基上 ,其中异丁烯主要以π络合形式吸附 ,这种吸附态容易转变为叔丁基正碳离子 .甲醇与异丁烯在HBT6分子筛催化剂上的醚化反应按照L -H机理进行 ,表面反应为速度控制步骤  相似文献   

8.
MIBC脱氢制备MIBK宏观动力学研究   总被引:1,自引:0,他引:1  
采用共沉淀法制备的铜系CuO/ZnO/Al2O3脱氢催化剂,在常压下进行了甲基异丁基甲醇的气相脱氢制备甲基异丁基酮的反应实验.研究了单管反应器中反应温度和MIBC进料液时空速对脱氢反应的影响,并建立了宏观动力学方程.结果表明在温度为483~513 K,液时空速为1.0~2.0 h-1的条件下,甲基异丁基甲醇脱氢单程转化率最高达到91.11%,甲基异丁基酮的选择性大于99.0%.将实验结果用最小二乘法拟合得到该反应的宏观动力学方程为,其中k = 9.542×107exp(-E / RT),E为58.08 kJ·mol-1.动力学方程的关联线性度和方差分析计算表明,所建立的宏观动力学方程较好地描述了甲基异丁基甲醇的气相脱氢反应.  相似文献   

9.
金韵  俞启全  刘梅笑 《化工学报》1988,39(4):431-439
在30-40目的Pb_(0.88)Bi_(0.06)La_(0.02)Mo/SiO_2催化剂上甲醇氧化制甲醛的反应在动力学区域进行,其速度规律服从二步骤Redox机理动力学方程.当催化剂增大到3mm时,其动力学方程受内扩散影响严重,实验上测定了催化剂有效因子在0.28—0.12之间.作者对甲醇内扩散控制时的Redox机理动力学方程进行了理论上的推导和实验上的验证.实验上测定了受内扩散控制时的反应活化能,并从理论上指出动力学区域与内扩散区域活化能的关系.用动力学方法测定了甲醇在给定反应条件下的扩散系数和曲折因子.  相似文献   

10.
以CO在铂催化剂上发生的催化氧化反应为例,以L-H机理和E-R机理为基础,建立了该催化反应的5种动力学模型。利用化学反应网络理论,并依据该反应的多定态特性,对5种可能的动力学模型进行了筛选。筛选结果表明:根据L-H机理得到的模型对应的反应网络能够出现多定态现象,根据E-R机理得到的模型对应的反应网络则无法出现反应体系的多定态现象,因此,L-H机理更为接近CO在铂催化剂上催化氧化的真实反应机理,这与文献结论吻合,证明了利用反应的多定态特性筛选催化反应动力学模型的可行性。  相似文献   

11.
Chen Dong  Qinxin Zhao  Yaqing Zhang  Tongmo Xu  Shien Hui 《Fuel》2009,88(10):1858-1863
Carbon monoxide and hydrogen are two important components in the syngas. In this study, the laminar flame speed of hydrogen/carbon monoxide fuel mixtures is measured over a large range of fuel compositions (0-100% volume fraction for hydrogen in the mixture) by using a Bunsen burner. The reaction zone area is used to calculate the laminar flame speed. The equivalence ratio covers from lean conditions to rich conditions. The experimental results show that by using the Bunsen flame, the laminar flame speed calculated with the reaction zone area is reliable. Based on the experimental results, empirical equations are derived which can be readily employed to calculate the laminar flame speeds of hydrogen, carbon monoxide, and hydrogen/carbon monoxide mixtures.  相似文献   

12.
Kamal Kumar  Chih-Jen Sung 《Fuel》2011,90(3):1004-1011
Experimental results of laminar flame speeds and extinction stretch rates for the conventional (Jet-A) and alternative (S-8) jet fuels are acquired and compared to the results from our earlier studies for neat hydrocarbon surrogate components, including n-decane and n-dodecane. Specifically, atmospheric pressure laminar flame speeds are measured using a counterflow twin-flame configuration for Jet-A/O2/N2 and S-8/O2/N2 mixtures at preheat temperatures of 400, 450, and 470 K and equivalence ratios ranging from 0.7 to 1.4. The flow field is recorded using digital particle image velocimetry. Linear extrapolation is then applied to determine the unstretched laminar flame speed. Experimental data for the extinction stretch rates of the nitrogen diluted jet fuel/oxidizer mixtures as a function of equivalence ratio are also obtained. In addition, the experimental data of Jet-A are compared to the computed values using a chemical kinetic mechanism for a kerosene surrogate reported in literature. A sensitivity analysis is further performed to identify the key reactions affecting the laminar flame speed and extinction stretch rate for this kerosene surrogate.  相似文献   

13.
Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H2) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.  相似文献   

14.
Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions, equivalence ratios, and initial temperatures. The calculated results of natural gas are compared with previous experimental results that show a good agreement. The calculated laminar flame speeds of natural gas-carbon monoxide-air mixtures show a nonmonotonic increasing trend with volumetric fraction of carbon monoxide and an increasing trend with the increase of initial temperature of mixtures. The maximum laminar flame speed of certain fuel blend reaches its biggest value when there is 92% volumetric fraction of carbon monoxide in fuel at different initial temperatures. Five stoichiometric natural gas-carbon monoxide-air mixtures are selected to study the detailed chemical structure of natural gas-carbon monoxide-air mixtures. The results show that at stoichiometric condition, the fuel blend with 80% volumetric fraction of carbon monoxide has the biggest laminar flame speed, and the C normalized total production rate of methane with 80% volumetric fraction of carbon monoxide is the largest of the five stoichiometric mixtures.  相似文献   

15.
Experimental studies have been performed to investigate the flame structure and laminar burning speed of JP-8/oxidizer/diluent premixed flames at high temperatures and pressures. Three different diluents including argon, helium, and a mixture of 14% CO2 and 86% N2 (extra diluent gases), were used. The experiments were carried out in two constant volume spherical and cylindrical vessels. Laminar burning speeds were measured using a thermodynamics model based on the pressure rise method. Temperatures from 493 to 700 K and pressures from 1 to 11.5 atm were investigated. Extra diluent gases (EDG) decrease the laminar burning speeds but do not greatly impact the stability of the flame compared to JP-8/air. Replacing nitrogen in the air with argon and helium increases the range of temperature and pressure in the experiments. Helium as a diluent also increases the temperature and pressure range of stable flame as well as the laminar burning speed. Power law correlations have been developed for laminar burning speeds of JP-8/air/EDG and JP-8/oxygen/helium mixtures at a temperature range of 493-700 K and a pressure range of 1-10 atm for lean mixtures.  相似文献   

16.
A possibility of determining the regime of combustion of individual fuel particles on the basis of the dependence of the flame velocity on the fuel and oxidizer concentrations is considered by an example of a dust flame of microsized metal particles with diameters d 10 < 15 μm and particle concentrations from ≈1010 to 1011 m?3 in oxygen-containing media at atmospheric pressure. The combustion mode (kinetic or diffusion) is responsible for the qualitative difference in the character of the normal velocity of the flame as a function of the basic parameters of the gas suspension. The analysis of such experimental dependences for fuel-rich mixtures shows that combustion of zirconium particles (d 10 = 4 μm) in a laminar dust flame is controlled by oxidizer diffusion toward the particle surface, whereas combustion of iron particles of a similar size is controlled by kinetics of heterogeneous reactions. For aluminum particles with d 10 = 5–15 μm, there are no clearly expressed features of either kinetic or diffusion mode of combustion. To obtain more information about the processes responsible for combustion of fine aluminum particles, the flame velocity is studied as a function of the particle size and initial temperature of the gas suspension. It is demonstrated that aluminum particles under the experimental conditions considered in this study burn in the transitional mode.  相似文献   

17.
Flames of di-t-butyl-peroxide (DTBP) decomposition in a 0.376DTBP + 1.0N2 mixture are studied in laminar and turbulent media. The observed values of unstretched laminar burning velocity are in reasonable agreement with the value obtained from the Zel’dovich-Semenov-Frank-Kamenetsky theory. Turbulent explosions in this particular mixture are characterized by a number of features that are believed to be common for all developing turbulent flames and have relevance to spark-ignition engine combustion of lean mixtures. Flame propagation is unsteady and is characterized by a mass burning rate that increases in time. The rate of the flame acceleration varies from one explosion to another. If the burning rate is related to the average flame radius, however, it exhibits much smaller variations. This phenomenon bears a striking resemblance to cycle-to-cycle variations in a spark-ignition engine. Comparisons of the present results with mixtures of significantly different composition, chemical kinetics, and exothermicity, but with similar laminar flame speed and Lewis number show that the data obtained in closed-volume explosions are in good agreement if the unsteady character of the flame is taken into account. The differences in details of the kinetic mechanisms and thermochemistry appear to be responsible for the flame behaviour only near the limit of extinction by turbulence. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 43–52, July–August, 2009.  相似文献   

18.
Fikret Inal  Selim M. Senkan 《Fuel》2005,84(5):495-503
Atmospheric pressure, laminar, premixed, fuel-rich flames of n-heptane/oxygen/argon and n-heptane/oxygenate/oxygen/argon were studied at an equivalence ratio of 1.97 to determine the effects of oxygenate concentration on species mole fractions. The oxygen weight percents in n-heptane/oxygenate mixtures were 2.7 and 3.4. Three different fuel oxygenates (i.e. MTBE, methanol, and ethanol) were tested. A heated quartz micro-probe coupled to an on-line gas chromatography/mass spectrometry has been used to establish the identities and absolute concentrations of stable major, minor, and trace species by the direct analysis of samples, withdrawn from the flames. The oxygenate addition has increased the maximum flame temperatures and reduced the mole fractions of CO, low-molecular-weight hydrocarbons, aromatics, and polycyclic aromatic hydrocarbons. The reduction in mole fractions of aromatic and polycyclic aromatic hydrocarbon species by an increase in oxygenate concentration was more significant.  相似文献   

19.
D.P. Mishra 《Fuel》2003,82(12):1471-1475
The growing popularity of natural gas as a eco-friendly fuel, is of paramount motivation of present investigation. In the present paper, the effect of initial temperature on the flame structure have been investigated in which laminar one-dimensional planar propagating flames of CH4/air mixtures is simulated numerically using detailed chemical kinetic scheme and realistic transport models. The burning velocities are fundamentally important in developing models to predict progress of combustion. Hence, the burning velocities as a function of initial temperature of unburnt gas have been computed for stoichiometric mixture. The present predictions of burning velocities are compared with reported experimental data of Stone et al. [Combust. Flame. 114 (1998) 546], Hill and Huang [Combust. Sci. Technol. 60 (1980) 7] and Rallis and Garforth [Combust. Flame 31 (1978) 53]. The present prediction lies within the scatter of experimental data. A correlation in the form of Su/Su,0=(Tu/Tu,0)1.575 has been developed to describe the dependence of initial temperature on the burning velocity for stoichiometric mixture. The structures of flame are investigated in details for initial temperature of 300 and 600 K which clearly indicate that detailed chemical kinetics are essential for prediction of the effects of initial temperature on the burning velocities. The present study will help in designing and developing the regenerative combustion systems.  相似文献   

20.
In this work, experiments have been performed to measure the detonation velocities and characteristic cell sizes in the dimethyl ether (DME) fuel-oxygen mixtures. Equilibrium calculation and detailed chemical kinetics modeling of the ZND structure of detonations are also carried out to investigate the detonation characteristics of DME. Detonation cell sizes estimated using a correlation model by Ng et al. [Ng HD, Ju Y, Lee JHS. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int J Hydrogen Energy 2007;32:93-99] are in good agreement with experimental data. It is found that the cell size values for DME-oxygen mixtures are comparable to those of propane or ethane fuels. At low initial pressure, double cell like detonation structures have been observed in all equivalence ratios considered in this study. Chemical kinetic results reveal that DME oxidation under detonation environment exhibits similarly a two-stage heat release process inside the reaction zone. This effect may play a significant role in the existence and scaling of the multi-cell detonation pattern in stoichiometric and fuel-rich DME mixtures. On the lean side, multiple cells appear to be caused primarily by the strong intrinsic instability of the unsteady detonation front. The present experimental results and chemical kinetic sensitivity analyses provide some basic information to assess detonation hazards in DME-based mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号