首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the effects of material and processing parameters on the thermoforming process is critical to the optimization of processing conditions and the development of better materials for high quality products. In this study we investigated the influence of initial temperature distribution over the sheet on the part thickness distribution of a vacuum snap‐back forming process. The linear viscoelastic properties along with the Wagner two parameter nonlinear viscoelastic constitutive model were utilized for numerical simulation of the thermoforming operation. Simulations of pre‐stretched vacuum thermoforming with a relatively complex mold for a commercial refrigerator liner were conducted. THe effects of temperature distribution over the sheet on the part thickness distribution were determined to examine process sensitivity and optimization. Effects of the temperature distribution on the material rheology and polymer/mold friction coefficient are primarily responsible for the changes in the thickness distribution. We found that even small temperature differences over the sheet greatly influenced bubble shape and pole position during the bubble growth stage and played a critical role in determining the part thickness distribution. These results are discussed in terms of rheological properties of polymers such as elongational viscosity and strain hardening.  相似文献   

2.
The rubber particles included in rubber modified polymeric materials such as acrylonitrile‐butadiene‐styrene (ABS) polymer and impact modified polymers play an important role in determining their rheological properties, processing behavior, and mechanical properties. In this study both small strain oscillatory shear viscosity in the frequency range from 10?2 to 102 s?1 and uniaxial elongational viscosity behavior at two elongation rates ( = 0.1 and 1.0 s?1) over the range of temperatures from 140°C to 200°C were measured for commercial ABS polymers with different contents and deformability of rubber particles. The influences of rubber content and deformability on rheological properties such as melt elasticity, elongational viscosity, strain hardening and/or softening, the onset of nonuniform deformation, and thermoforming performance were investigated. The Wagner two‐parameter nonlinear viscoelastic constitutive model was used to describe strain hardening behavior, while the Considère criterion was used to determine the onset point of nonuniform deformation. The part thickness distribution obtained through use of a vacuum snap‐back forming process was simulated to investigate the effects of rheological changes associated with different rubber particles on the thermoforming performance. It was found that ABS polymers with larger contents of hard rubber particles exhibited more melt elasticity, stronger strain hardening, a maximum of biaxial elongational viscosity, onset of nonuniform deformation at later time, and better thermoforming performance. Strain hardening and the Considère criterion provide simple, reliable indicators of the thermoforming performance of ABS polymers.  相似文献   

3.
Compared to amorphous thermoplastics, semi‐crystalline thermoplastics usually have a smaller processing range for thermoforming, due to their narrow temperature window for the transition from viscoelastic to viscous material behavior. On the other hand, semi‐crystalline thermoplastics offer superior properties for applications like ductility or chemical resistance. Within this article, modification of semi‐crystalline polyamide 12 by radiation cross‐linking with respect to its suitability for vacuum thermoforming as well as the effects of processing parameters and sheet thickness on the resulting strain distributions in thermoformed parts are shown. Experimental thermoforming processing studies in combination with digital image correlation measurements, thermo‐mechanical and elongational rheometry were performed to characterize the behavior of cross‐linked semi‐crystalline thermoplastics in the vacuum thermoforming process. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers  相似文献   

4.
Rheological properties and processability of thermoforming were studied for high‐density polyethylene (HDPE) and a blend of HDPE with crosslinked HDPE (xHDPE). Blending the xHDPE, which enhances melt strength and strain hardening in elongational viscosity of HDPE, helps the sheet avoid sagging in thermoforming. Moreover, the product of the blend obtained by vacuum forming has uniform wall thickness. Melt strength and strain hardening of the blend were, however, depressed by a processing history in a single‐screw extruder, whereas reprocessing by a two‐roll mill enhanced the melt strength again. It is considered that the processing history by a single‐screw extruder, in which shear‐dominant flow takes place, depresses the trapped entanglements between network chain of xHDPE and linear HDPE molecules, and results in low level of melt strength. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 79–83, 2002  相似文献   

5.
Solving problems for thermoforming processes in the production of axisymmetric thin walled plastics is investigated in this research work. A nonlinear viscoelastic rheological model with a new strain energy function is suggested for improvement of physical properties of final product. For model validation, a quantitative relation between stress and technical parameters of plug‐assist thermoforming is determined by comparison of theoretical and experimental results. This process with the proposed rheological model could be suggested for prevention from some technical defects such as wall thickness variations, physical instability during inflation‐shrinkage, and warpage exhibited in the final part of a polymeric sheet thermoforming. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4148–4152, 2006  相似文献   

6.
7.
The effect of molecular weight on the rheological properties in the molten state has been studied for binary blends of high‐density polyethylene obtained by the Zieglar–Natta catalyst and low‐density polyethylene produced in an autoclave process. The blends composed of high‐density polyethylene with a high molecular weight and low‐density polyethylene show a higher drawdown force than the individual pure components, whereas the blends of high‐density polyethylene with a low molecular weight and low‐density polyethylene do not exhibit anomalous behavior. The pronounced drawdown force for the former blend system is attributed to the viscous enhancement in the linear viscoelastic region as well as the nonlinear strain‐hardening behavior in the elongational viscosity. POLYM. ENG. SCI. 46:1284–1291, 2006. © 2006 Society of Plastics Engineers  相似文献   

8.
The elaboration of a n in‐situ composite consisting of ethylene vinyl acetate copolymer (EVA) and polybutylenetherephtalate (P m was investigated. An inter‐chain chemical reaction during processing operations was used to generate a grafted PBT‐g‐EVA copolymer at the interface of the two polymers. Composites with either nodular or fibrillar morphologies were obtained. Fibrillar morphology was achieved by stretching the extruded blend at the exit of the die. Elongational properties of such composites were investigated by using the fiber wind‐up technique. The influence of the aspect ratio of PBT solid inclusions on the elongational viscosity was discussed for a series of EVA/PBT composites. Clearly, the strain hardening softening properties were found to be strongly affected by the aspect ratio. Increasing the aspect ratio of PBT solid particles made the strain hardening weaker and even gave strain‐softening. This behavior is emphasized by the presence of the grafted PBT‐g‐EVA copolymer. The results suggest that strain‐hardening or softening of such composites is correlated to the homogeneity of the flow at EVA‐PBT interface: the elongational flow is disrupted in the interphase region so that the deformation around the particle is not homogeneous.  相似文献   

9.
Plug‐assist thermoforming is a well‐known technique in polymer processing because of its interesting features. The dynamic value of driving‐force for the stretching process is determined based on equilibrium equation. This amount of force is required for applying to a plug to stretch a sheet. It is used for calculation of the required theoretical work and power of a plug‐assist thermoforming process. By using a nonlinear viscoelastic rheological model in the proposed mathematical model, its validity was examined by performing experimental tests on ABS sheets. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
Adding fillers to a polymer melt may result in a strain softening behavior in elongational flow in long‐chain branched materials, showing strain‐hardening behavior when compared with unfilled one. To improve the strain‐hardening properties in wood/LDPE composites, the effect of peroxide concentration on both the molecular architecture and molar mass distribution, and the rheological quantities in shear and elongation is studied. Addition of wood flour increases the viscosity according to a logarithmic mixing rule, as expected from the large particle size and the filler fractions used. The peroxide has multiple effects on the molar architecture of the polymer. First, a gel fraction of cross‐linked material is formed, the concentration of gel being dependent of the amount of peroxide used. Second, a higher molar mass component is detected, leading to higher value of Mw and to a broader molar mass distribution. Finally, the degree of long‐chain branching unexpectedly decreases with increasing peroxide content. The changes in molecular architecture are hardly influenced by addition of the wood flour. The peroxide treatment leads to an improved strain‐hardening behavior, detected by elongational viscosity and melt strength measurements. However, the addition of wood flour decreases the amount of strain hardening.POLYM. COMPOS., 33:2084–2094, 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
This study investigates the effect of hemp fibres on the shear and elongational rheology of polypropylene (PP). The parameters studied were hemp content (0‐30%) and maleic anhydride polypropylene (MAPP) addition (0‐0.6%). Shear rheology revealed that fibre content mainly influences low shear rate properties like yield stress and zero‐shear‐viscosity while coupling agent addition mainly influences intermediate to high shear rate parameters like relaxation time, power‐law index and Yasuda parameter. On the other hand, elongational rheology results showed a strain softening behaviour of the composites with increasing consistency and decreasing strain at break as fibre concentration increases. MAPP addition is also shown to improve the fibre‐polymer compatibility, but at the same time produces a plasticizing effect having a significant effect on rheological properties. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
The neck‐in level and the maximum drawdown speed at extrusion coating for low‐density polyethylene are studied with the evaluation of the rheological properties in the molten state and the dilute solution properties. It is found that the viscous properties in the molten state and the dilute solution properties are not sensitive to the processability, whereas the elastic nature has a great impact. In particular, the elastic response in the nonlinear region, such as drawdown force and strain‐hardening behavior in elongational viscosity, can be employed for the prediction of the processability at extrusion coating. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
An experimental study of steady shear and elongational flow Theological properties of a series of polypropylene melts of varying molecular weight and distribution is reported. Broadening the molecular weight distribution increases the non-Newtonian character of the shear viscosity function and increases the principal normal stress differences at fixed shear stress. The behavior is compared to earlier rheological property-molecular weight studies. Correlations are developed for these properties in terms of molecular structure. Elongational flow studies indicate that for commercial and broader molecular weight distribution samples, ready failure by neck development occurs and the elongational viscosity appears to decrease with increasing elongation rate. For narrower molecular weight distribution samples, the elongational viscosity is an increasing function of elongation rate, The implication of these experimental results to viscoelastic fluid constitutive equations and polymer melt processing is developed.  相似文献   

14.
In many polymer manufacturing operations, the material is processed near the glass transition temperature (Tg). Examples are thermoforming, blow molding, film blowing, hot embossing, forging, plastic welding, and de‐airing in safety glass lamination. In these processes, solid‐like behaviors such as strain hardening and yielding play important roles. These material properties cause the material to flow (or deform) in a way that substantially differs from a polymer melt. In order to understand the flow behavior near the Tg, polyvinyl butyral (PVB), a rubbery polymer used in safety glass lamination, was studied in this work. The flow properties of the polymer above the Tg were characterized by using both shear and elongational rheometers, and a tensile tester. The measured flow properties were described by a viscoelastic constitutive model.  相似文献   

15.
A series of poly(methyl methacrylate) (PMMA) blends with rigid ladderlike polyphenylsilsesquioxane (PPSQ) were prepared at weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20 by solution casting and then hot‐pressing. Their rheological properties have been studied under both dynamic shear and uniaxial elongation conditions. Their rheological properties depend on the compositions. The storage modulus, G′, loss modulus, G″, and dynamic shear viscosity, η*, of the PMMA/PPSQ 95/5 blend were slightly lower than those of pure PMMA. However, the values of G′, G″, and η* for the other PMMA/PPSQ blends are higher than those of PMMA. The G′ values increase with an increase in PPSQ content from 5% through 15% PPSQ at low frequencies and then drop as the PPSQ content increases to 20%. Uniaxial elongational viscosity (ηE) data demonstrate that PMMA/PPSQ blends exhibit slightly weaker (5% PPSQ) and much weaker (10% PPSQ) strain‐hardening than PMMA. In contrast, the PMMA/PPSQ 85/15 blend shows strain‐softening. Neither strain‐hardening nor strain‐softening was observed in the 80/20 blend. The special rheological properties for the 95/5 blend is probably due to a decrease in PMMA entanglements brought by the specific PMMA–PPSQ interactions. Rheological properties of PMMA/PPSQ blends with higher PPSQ content (≥10%) are mainly affected by formation of hard PPSQ particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 352–359, 2007  相似文献   

16.
Blending a crosslinked high‐density polyethylene (xHDPE) enhances melt strength and strain hardening behavior in elongational viscosity of high‐density polyethylene (HDPE) to a great degree. Gel fraction of xHDPE has a stronger effect on the strain hardening than sol fraction, although sol fraction also enhances the strain hardening to some degree. Further, the xHDPE crosslinked by peroxide in a compression mold exhibits more pronounced effect than xHDPE by radiation, which is attributed to the difference in the amount of the gel fraction. The xHDPE, which enhances the strain hardening, has sparse crosslink points in the network. Moreover, it was found from linear viscoelastic measurements, such as oscillatory modulus and relaxation modulus, that the xHDPE is characterized as a critical gel, which was also supported by the result of tensile testing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 73–78, 2002  相似文献   

17.
In this study, the simulation of a vacuum forming process employing a micromechanical inspired viscoelastic–viscoplastic model is investigated. In the vacuum forming process, a plastic sheet is heated above the glass transition temperature and subsequently forced into a mold by applying a vacuum. The model consists of a generalized Maxwell model combined with an dissipative element in series. Each Maxwell element incorporates a hyperelastic element in series with a viscous element based on a hyperbolical law. While the generalized Maxwell model considers the relaxation due to molecular alignment, the additional viscous element is a modification based on the approach of Bergström and thus considers molecular chain reptation. The model is designed with the aim to converge to the generalized linear Maxwell model in the limit of small deformation. Furthermore, the viscous modeling is temperature activated and follows the Williams–Landel–Ferry approach in the limit of linear viscoelasticity. To simulate rheological standard experiments, a physical-network-based implementation into Simscape is presented. To validate the performance of the model in thermoforming, it is implemented into Fortran programming language for finite element simulation with Abaqus/Explicit. It can be shown that the simulation is able to predict the thickness in high correlation with experimental results.  相似文献   

18.
During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57? glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57? glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.  相似文献   

19.
The non-linear viscoelastic properties of pure polypropylene and its clay nanocomposites are studied to establish structure–property relationship in conjunction with clay concentrations. First, flow birefringence is performed through a slit-die to obtain centerline principal stress difference during elongational flow for clay nanocomposites. The centerline stress profile of clay nanocomposite reveals additional viscoelastic nature even at low silicate concentrations, while similar short-time chain relaxation is observed. The effects of higher clay concentrations are further examined during the simple shearing flow to consider damping properties of the clay nanocomposites. The step strain, dynamic shear and steady shear are performed. All the samples show time-strain separable melt flow behavior adequately demonstrated through Wagner’s exponential damping function. The damping coefficient is found to be strongly dependent on clay percentage revealing viscoelastic differences therein. We have also used a time-strain separable Kaye-Bernstein Kearsley Zapas (K-BKZ) type constitutive equation to predict steady shear stress. The suggested constitutive model satisfies simple shear at lower fractions of clay while the damping function behaves similar to pure polymer thought to result from the absence of filler–filler interactions and chain length degradation. The unusual rheological behavior for maximum clay concentration studied is explained on experimental as well as theoretical basis. Thus, the results of this investigation would improve the theoretical understanding of possible molecular orientations at different clay concentrations during elongational and shearing flows.  相似文献   

20.
Rheological properties of metallocene‐catalyzed isotactic polypropylenes (MET‐PP) were evaluated in comparison with those of Ziegler–Natta‐catalyzed isotactic polypropylenes (ZN‐PP) and MET‐PP was generally characterized in a rheological aspect. Based on the characterization, various flow processibilities and their effect on the higher order structure and product properties of the processed article were estimated. The capillary flow properties at various temperatures, elongational flow properties, and dynamic viscoelasticities of MET‐PPs and ZN‐PPs with various melt flow indexes (MFIs) were measured. Furthermore, as an example of application of rheological analysis, the selection of proper raw resin and processing conditions in the sheet‐extrusion of MET‐PP was studied. MET‐PP shows the following rheological features due mainly to the narrow molecular weight distribution in comparison with ZN‐PP with equivalent MFI to that of MET‐PP: while the viscosities at low shear rates are lower, those at high shear rates are higher. Although there is little difference in the loss modulus G″ (viscosity), the storage modulus G′ (elasticity) is very (about one decade) lower. The die swell is much smaller. The entrance pressure loss and end correction coefficient are lower. The critical shear rate at which a melt fracture begins to occur is lower. The melt tension, elongational viscosity, and melt flow index ratio are lower. The flow activation energy is slightly lower. The zero‐shear viscosity obeys the 3.4th‐power law independent of catalyst. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2157–2170, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号