首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Acrylonitrile‐butadiene rubber (NBR) filled with two types of fillers [high abrasion furnace carbon black (C), and graphite (G)] is made to find out the effect of order addition of C and G on the electrical conductivity of the composites. The temperature and frequency dependence of the (dc and ac) conductivity and dielectric constants have been measured. The values of the thermal expansion and thermal conduction coefficient of NBR rubber lead to the difference in IV characteristics between CB‐ and G‐NBR rubber composites during the measurement. When graphite is first added to NBR, the electrical conductivity of (GC20‐20) matrix is larger than that of the (CG20‐20) matrix, whereas the carbon black is added first. At low temperature (T < 90°C), the higher values of the dielectric constant (ε′) for the sample GC20‐20 compared with that of the CG20‐20 sample is due to the conducting nature and structure of graphite, whereas the carbon shows less crystallinity and conductivity than graphite. Opposite behavior is noticed at temperature higher than 90°C. The dc conductivity of all composites increases with increasing temperature exhibiting a positive temperature coefficient of conductivity (PTCσ). The conductivity at high temperatures region is controlled by the thermal excitation transport mechanism, whereas at low temperatures region is dominated by tunneling process. The increase in the value of dielectric constant (ε′) with temperatures for the sample GC20‐20 compared with the sample CG20‐20 is due to the conducting nature and structure of graphite, and the carbon less crystalline than the graphite. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
This article deals with the investigation of electrical properties of epoxy‐based nanocomposites containing graphene oxide nanofillers dispersed in the polymer matrix through two‐phase extraction. Broadband dielectric spectroscopy and dc electrical conductivity as a function of electric field have been evaluated in specimens containing up to 0.5 wt % of nanofiller. Nanocomposites containing pristine graphene oxide do not show significant changes of electrical properties. On the contrary, the same materials after a proper thermal treatment at 135°C, able to provoke the in situ reduction of graphene oxide, exhibit higher permittivity and electrical conductivity, without showing large decrease of breakdown voltage. Moreover, a nonlinear behavior of the electrical conductivity is observed in the range of electric fields investigated, i.e. 2–30 kV mm?1. A new relaxation phenomenon with a very low temperature dependence is also evidenced at high frequency in reduced graphene oxide composites, likely associated to induced polarization of electrically conductive nanoparticles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41923.  相似文献   

3.
While it is well‐established that ionic conduction in lithium aluminosilicates proceeds via hopping of Li ions, the nature of the various hoping‐based mechanisms in different temperature regimes has not been fully elucidated. The difficulties associated with investigating the conduction have to do with the presence of grains and grain boundaries of different orientations in these usually polycrystalline materials. Herein, we use electrochemical impedance spectroscopy (EIS) to investigate the ion conduction mechanisms in β‐eucryptite, which is a prototypical lithium aluminosilicate. In the absence of significant structural transitions in grain boundaries, we find that there are three conduction regimes for the one‐dimensional ionic motion along the c axis channels in the grains, and determine the activation energies for each of these temperature regimes. Activation energies computed from molecular statics calculations of the potential energy landscape encountered by Li ions suggest that at temperatures below 440°C conduction proceeds via cooperative or correlated motion, in agreement with established literature. Between 440°C and 500°C, the activation barriers extracted from EIS measurements are large and consistent with those from atomistic calculations for uncorrelated Li ion hopping. Above 500°C the activation barriers decrease significantly, which indicates that after the transition to the Li‐disordered phase of β‐eucryptite, the Li ion motion largely regains the correlated character.  相似文献   

4.
The dielectric relaxation and electrical conduction were investigated in (BixNa1?x)0.94Ba0.06TiO3 (Abb. xBNBT6, x = 0.5, 0.495, 0.485, and 0.475) ceramics prepared by solid state reaction. With a decrease in x, the dielectric properties of the ceramics decreased, whereas the electrical conduction increased, resulting in a transition from insulator to oxide‐ions conductor. When x = 0.475, the ceramics exhibited large conductivity (~10?3 S cm?1 at 575°C) and low activation energy (~0.45 eV), indicating their potential application in solid oxide fuel cells. A mixed conduction mechanism with oxide‐ions, electrons, and holes was proposed. With a decrease in x from 0.495 to 0.475, it was found that the p‐type conduction was switched to n‐type conduction. The dielectric relaxation of the x = 0.495 sample was associated with short‐range hopping of oxygen vacancies. However, the dielectric properties of the x = 0.485 and 0.475 samples can be explained by Maxwell‐Wagner interface relaxation.  相似文献   

5.
To develop a new class of composites with adequately high thermal conductivity and suitably controlled dielectric constant for electronic packages and printed circuit board applications, polymer composites are prepared with microsized Al2O3 particle as filler having an average particle size of 80–100 μm. Epoxy and polypropylene (PP) are chosen as matrix materials for this study. Fabrication of epoxy‐based composite is done by hand lay‐up technique and its counterpart PP‐based composite are fabricated by compression molding technique with filler content ranging from 2.5–25 vol%. Effects of filler loading on various thermal properties like effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and electrical property like dielectric constant (εc) of composites are investigated experimentally. In addition, physical properties like density and void fraction of the composites along with there morphological features are also studied. The experimental findings obtained under controlled laboratory conditions are interpreted using appropriate theoretical models. Results show that with addition of 25 vol% of Al2O3, keff of epoxy and PP improve by 482% and 498% respectively, Tg of epoxy increases from 98°C to 116°C and that of PP increases from −14.9°C to 3.4°C. For maximum filler loading of 25 vol% the CTE decreases by 14.8% and 26.4% for epoxy and PP respectively whereas the dielectric constants of the composites get suitably controlled simultaneously. POLYM. COMPOS., 36:102–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
In order to study the effect of introducing ethylene‐ethylacrylate copolymer (EEA) in carbon black‐HDPE composite systems, two HDPE‐EEA composites prepared by pre‐blending and masterbatch‐blending processes were compared with HDPE and EEA composites in terms of positive temperature coefficient (PTC) characteristics and percolation threshold. The percolation threshold of masterbatch‐blended composites occurred at the lowest carbon black concentration among four kinds of composites. The conduction path in the masterbatch‐blended composite is effectively formed as a result of the localization of carbon black distribution predominantly in the EEA phase, resulting in an increase of conductivity. Ipeak values, the resistivity ratio of the peak to 25°C, of two blend composites were lower than those of HDPE composites. The I85 values, the resistivity ratio of 85°C to 25°C, of masterbatch‐blended composites were higher than those of pre‐blended as well as HDPE composites. It is evident that since most carbon black is dispersed in the EEA phase of the masterbatch‐blended composites, the conduction networks are mainly broken by the crystal melting of EEA before the temperature reaches the crystal melting temperature of HDPE.  相似文献   

7.
This work reports on the relationship between structure and dielectric properties of biaxially oriented polypropylene. The morphology of semicrystalline bioriented isotactic polypropylene films is investigated using wide angle X‐ray diffraction and Polarized Optical Microscopy. A β‐orthorhombic structure, with a crystallinity ratio of about 46%, and “Crater” morphology of the β‐form is identified. Dielectric properties are measured by Broadband Dielectric Spectroscopy over a wide temperature range (?150 to 125°C). Since the dissipation factor of the PP is very low, special care was taken to obtain valid data. Two main relaxation processes are observed: a α‐relaxation peak associated to the glass transition temperature (Tg) at temperature about ?7°C, and a broad β*‐relaxation at about ?60°C, partly attributed to CH orientation. The variation of the dissipation factor versus sample thickness (from 3.8 to 11.8 µm) is correlated and partly explained by the increase of crystallinity ratio and lamella size at larger thicknesses. It comes out that the thinnest film seems perfectly meet the application requesting, namely lowest dissipation factor and highest permittivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42602.  相似文献   

8.
Polycrystalline BiFeO3 was synthesized at 400°C–700°C. Distinctive difference in the magnetic and dielectric properties was observed between the samples sintered at 400°C–500°C and those sintered at 600°C–700°C. The former showed ferromagnetic‐like hysteresis loops with an increased magnetization of 0.54 emu/g, whereas the later showed linear loops with a small magnetization of 0.065 emu/g. Although X‐ray did not identify any secondary phase, the suspected trace of some magnetic phase (Fe3O4) in the samples was conceded by the occurrence of an exchange bias. The difference in dielectric response between the two groups of samples arose mainly from a different conductivity at the grain boundaries. Owing to Fe3O4 coating at grain surface, the 400°C–500°C sintered samples behaved like a single parallel R–C circuit, whereas the dielectric response of the samples sintered at 600°C–700°C was represented by a series of two parallel R‐C units for grains and grain boundaries, respectively. Two dielectric relaxation peaks observed at <700 Hz and 0.3~6 MHz in the high‐temperature sintered samples were attributed to the Maxwell–Wagner relaxation and electron hopping, respectively.  相似文献   

9.
Novel phosphorus‐containing polyhedral oligomeric silsesquioxane (POSS)/polyimides (PI) hybrid materials with low dielectric constant and low linear coefficients of thermal expansion (CTE) were prepared and characterized. The POSS/PI hybrid materials were synthesized with octa(aminopropyl)silsesquioxane (OAPS) and a series of phosphorus‐containing polyamide acids(PAA). The PAAs were synthesized with bis(4‐aminophenoxy) phenyl phosphine oxide (BAPPO), 4,4’‐diaminodiphenyl ether (ODA) and 3,3',4,4'‐biphenyl tetracarboxylic diandhydride (BPDA). The structures and properties of the hybrid materials were characterized. And the effect of the phosphorus‐containing structure on the POSS/PI hybrid materials was discussed. The dielectric constants and CTE of the hybrid materials were remarkably lower than that of the unmodified POSS/PI films. The lowest values of dielectric constant and CTE could achieve as low as 2.64 (1 MHz) and 27.45 ppm/K. Besides, the hybrid materials also had excellent thermal properties. The highest 5% weight loss temperature of the hybrid materials was as high as 580°C under air. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42611.  相似文献   

10.
A novel BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO (BT‐NBT‐Nb‐Ni) system that meets the X8R specification (?55°C–150°C, ΔC/C≤±15%) of multilayer ceramic capacitors (MLCCs) was fabricated, with a maximum dielectric constant of 2350 at room temperature (25°C). Core–shell microstructure was observed by transmission electron microscopy (TEM), accounting for the good dielectric temperature stability. The role of Ni on the formation of core–shell structure and phase structure, and the subsequent relationship between structure and dielectric/ionic conduction properties were investigated. It was observed that the addition of Ni could adjust the ratio of core/shell, and significantly reduces the dielectric loss over the studied temperature range. A new Ba11(Ni, Ti)28O66+x phase with a 10‐layer close‐packed structure was identified by X‐ray diffraction (XRD), serving as a source of oxygen vacancies for ionic conduction in addition to Ba(Ni,Ti)O3. Furthermore, the impedance spectroscopy measurements demonstrated the remarkable impact of these Ni‐induced oxygen vacancies on both the grain and grain‐boundary conductivities.  相似文献   

11.
Electrically conductive organic and metalloorganic polymers are of great interest and they have applications in electronic, optical, photonic, photoelectric, electrochemical, and dielectric devices. Tetrameric cobalt phthalocyanine was prepared by conventional chemical method. The dielectric permittivity of the tetrameric cobalt phthalocyanine sample was evaluated from the observed capacitance values in the frequency range 100 KHz to 5 MHz and in the temperature range of 300 to 383°K. It is found that the system obeys the Maxwell Wagner relaxation of space charge phenomenon. Further, from the permittivity studies AC conductivity was evaluated. The values of AC conductivity and DC conductivity were compared. Activation energy was calculated. To understand the conduction mechanism Mott's variable range hopping model was applied to the system. The T?1/4 behavior of the DC conductivity along with the values of Mott's Temperature (T0), density of states at the Fermi energy N (EF), and range of hopping R and hopping energy W indicate that the transport of charge carriers are by three‐dimensional variable range hopping. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2529–2535, 2004  相似文献   

12.
This study presents an investigation on polyimides derived from a unfunctionalized symmetric cyclopentyl‐containing alicyclic cardo‐type dianhydride with ester linkage 1,1‐bis(4‐(3,4‐dicarboxylbenzoyloxy)phenyl)cyclopentylene dianhydride (BDPCP) that was readily accessed starting from cyclopentanone through two steps in high yield. Two series of polyimides, Cardo‐type series (CPI‐x) and analogous aromatic series (ArPI‐x) were prepared from condensation of BDPCP and aromatic 3,3′,4,4′‐Oxydiphthalic dianhydride with four aromatic diamines, respectively. Comparative studies revealed that CPI polymers show more favorable properties including better solubility in organic solvents, higher transparency with lower cut‐off wavelength (λ0) ranging in 395–375 nm than 425–405 nm, lower water absorption ranging in 0.66–1.14% and surface energy 23.71–32.77 mN/m than 1.01–1.28% and 29.52–41.99 mN/m of ArPI analogs. Meanwhile, CPI series exhibit considerable mechanical properties with tensile strengths ranging in 87.6–102.9 MPa, elongations at break 6.6–8.9%. Owing to the moderate strain in cyclopentyl ring, CPI series retain good thermal properties with the glass transition temperature (Tg) in the range of 217–271°C. Dynamic dielectric measurement revealed that Cardo‐type dianhydride BDPCP endows CPI‐4 film with lower dielectric constant (ε′) 3.34 at 1 MHz and 25°C and dielectric loss (ε′′) 0.0064 at 1 kHz and 25°C than 3.49 and 0.013 for ArPI‐4 film. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42670.  相似文献   

13.
This article describes the modification of polypropylene membranes leading to the preparation of thermo‐ and pH‐sensitive structures. Poly(N‐isopropylacrylamide), poly(acrylic acid), or copolymer poly(N‐isopropylacrylamide‐co‐acrylic acid) was grafted on to the membranes' surface activated by dielectric barrier discharge plasma. The properties of the modified membranes were evaluated by means of infrared spectroscopy and contact angle measurements. The effect of modification was monitored by the determination of water flux at two temperatures (20 and 45°C) and at various pH values (2.8–8.0). The membrane separation properties were investigated for the solutions of o‐bromocresol purple. It was found that membranes grafted with copolymer were responsive to both stimuli and they could be used for separation purpose. The separation performance was tailored by alteration of pH and temperature of feed solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41763.  相似文献   

14.
Lithium ion conducting solid polymer electrolyte (SPE) films consisted of poly(methyl methacrylate) (PMMA) matrix with lithium perchlorate as a dopant ionic salt, poly(ethylene glycol) as plasticizer and montmorillonite clay as inorganic nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The X‐ray diffraction study confirmed the amorphous structure of all these PMMA‐based solid electrolytes and the clay nanosheets existed in exfoliated form in their amorphous phase. Dielectric relaxation spectroscopy had been employed for the investigation of complex dielectric function, ac electrical conductivity, electric modulus, and impedance spectra of these electrolytes over the frequency range from 20 Hz to 1 MHz. It was observed that the dielectric properties and ionic conductivity of the electrolytes strongly depended on the sample preparation methods, and also had changes with addition of the clay nanofiller. Temperature‐dependent dielectric study of the electrolyte films confirmed that their dc ionic conductivity and conductivity relaxation time values obeyed the Arrhenius behavior. This study also revealed that the lithium ion transportation in the ion–dipolar complexes of these electrolytes occurred through hopping mechanism and it was correlated with the conductivity relaxation time. Preparation of these electrolyte films through ultrasonic assisted solution casting method increased the ionic conductivity by more than one order of magnitude in comparison to that of the classical solution casting method, which revealed that the former was a novel method for the preparation of these SPEs of relatively enhanced ionic conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42188.  相似文献   

15.
Bismuth layer–structured ferroelectric calcium bismuth niobate (CaBi2Nb2O9, CBN) is considered to be one of the most potential high-temperature piezoelectric materials due to its high Curie temperature Tc of ∼940°C, but the drawbacks of low electrical resistivity at elevated temperature and low piezoelectric performance limit its applications as key electronic components at high temperature (HT). Herein, we report significantly enhanced dc electrical resistivity and piezoelectric properties of CBN ceramics through rare-earth element Tb ions compositional adjustment. The nominal compositions of Ca1−xTbxBi2Nb2O9 (abbreviated as CBN-100xTb) have been fabricated by conventional solid-state reaction method. The composition of CBN-3Tb exhibits a significantly enhanced dc electrical resistivity of 1.97 × 106 Ω cm at 600°C, which is larger by two orders of magnitude compared with unmodified CBN. The donor substitutions of Tb3+ ions for Ca2+ ions reduce the oxygen vacancy concentrations and increase the band-gap energy, which is responsible for the enhancement of dc electric resistivity. The temperature-dependent dc conduction properties reveal that the conduction is dominated by the thermally activated oxygen vacancies in the low-temperature region (200–350°C) and by the intrinsic conduction in the HT region (350–650°C). The CBN-3Tb also exhibits enhanced piezoelectric properties with a high piezoelectric coefficient d33 of ∼13.2 pC/N and a high Tc of ∼966°C. Moreover, the CBN-3Tb exhibits good thermal stabilities of piezoelectric properties, remaining 97% of its room temperature value after annealing at 900°C. These properties demonstrate the great potentials of Tb-modified CBN for high-temperature piezoelectric applications.  相似文献   

16.
A stoichiometric and 2 mol% Ba deficient samples in the formulation 0.5BaTiO3‐0.5BiMg1/2Ti1/2O3 (BT‐BMT) were processed via a mixed oxide solid‐state route. The deficient sample exhibited a high relative permittivity (2100±15%) over the temperature range 90‐450°C and a low dielectric loss (tanδ < 0.01), maintained up to high temperature (430°C). The samples exhibited intrinsic conduction mechanism and showed an n‐type character. By introducing 2 mol% Ba vacancies, a dramatic influence on the dielectric loss was observed which was mainly associated with the trapping of electrons by barium‐oxygen vacancy pair associated with the intentionally produced cation vacancies. Thus, control of composition by creating deficiency allows fine tuning of the dielectric properties of BT‐BMT ceramics for applications in high‐temperature multilayered ceramic capacitors.  相似文献   

17.
Dielectric response of conducting carbon‐black‐filled ethylene–octene copolymer microcellular foams has been investigated with variation of blowing agent and filler loading in the frequency range of 100 Hz to 5 MHz and temperature range from 30 to 100°C. With increase in blowing agent loading, the dielectric permittivity increases for both unfilled as well as carbon‐black‐filled microcellular foams. The experimental complex impedance plots were compared with model‐fitted plots obtained by taking an equivalent circuit of (CQR) (CR).The values of Rb (bulk resistance), Rgb (grain boundary resistance), bulk capacitance (Cb), and grain boundary capacitance (Cgb) at different temperatures were calculated and compared with experimental values. The relaxation time due to bulk effect (τb) has been calculated from relaxation frequency (fr). The dc conductivity (σdc) decreases with rise in temperature indicating the existence of positive temperature coefficient of resistance in the material. The activation energy (Ea) calculated from the relaxation time due to bulk effect (τb) was found to be 0.446 eV, whereas it was 0.363 eV from the dc conductivity plot in the temperature range of 30–100°C. POLYM. COMPOS., 37:3398–3410, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

19.
Novel single‐ion‐conductor polymer (SCP) electrolytes based on oxalate‐chelated‐borate‐structure‐grafted poly(vinyl formal) (PVFM) were synthesized via a solution casting technique. The influence of the molar ratio of ? OH and boron atoms in PVFM on the ionic conductivity (σ) of the SCP electrolytes at different temperatures was investigated with alternating‐current impedance spectroscopy in the frequency range of 0.01 Hz to 1 MHz. The results show that σ of the SCP electrolytes at 15–60 °C was about 10?6–10?5 S/cm, and temperature dependence of the conductivity of the electrolytes followed the Vogel–Tamman–Fulcher relationship. The dielectric behaviors of the SCP electrolytes were analyzed in view of the dielectric permittivity and dielectric modulus of the electrolytes. Dielectric analysis revealed that the transport of Li+ ions in the PVFM‐based SCP electrolytes mainly followed a hopping mechanism coupled with the segmental motion of the polymer chain. Additionally, a dielectric relaxation was found in the high‐frequency region; this was a thermally activated result and also implied the appearance of carrier hopping. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43510.  相似文献   

20.
Polarization response and thermally stimulated depolarization current (TSDC) of BaTiO3‐based ceramic multilayer capacitors with Y5V specification were studied. The temperature dependence of dielectric behavior shows that as the dc electric field increases, the polarization response in the whole measurement range (from ?125°C to +350°C) is suppressed. As the temperature rises to about 250°C, dielectric loss significantly increases and has a dependence on dc electric field, due to the leakage behavior at high temperature. According to the hysteresis loops, the calculated electrostatic energy density and energy efficiency are also closely related to polarization‐electric field. Utilizing a fixed measuring polarization condition, two TSDC relaxation peaks are observed and both are associated with oxygen vacancies. It is demonstrated that the weak peak originates from the in‐grain migration of oxygen vacancies and the strong peak with high relaxation temperature is caused by the across grain‐boundary oxygen vacancies. The activation energy estimated for the relaxation of oxygen vacancies across grain boundaries is about 0.78 eV. The main contribution for the leakage behavior is from the across grain‐boundary relaxation of oxygen vacancies. With increasing of temperature and electric field stress, the extrinsic oxygen vacancy defects show more fluent migration, which eventually leads to the resistance degradation and breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号