首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

2.
The effectiveness of P(E‐co‐MA‐co‐GMA) as a compatibilizer for recycled PET/PP and recycled PET/PP‐EP (polypropylene (ethylene‐propylene) heterophase copolymer) blends was investigated by means of morphological (scanning electron microscopy), rheological (small amplitude oscillatory shear), mechanical (tensile, flexural and impact tests), and thermal (differential scanning calorimetry) properties. Compatibilizer concentration ranged from 1 to 5 wt % with respect to the whole blend. All blends were obtained in a 90/10 composition using a twin screw extruder. Compatibilization effects for PETr/PP‐EP were more pronounced due to ethylene segments present in both PP‐EP and P(E‐co‐EA‐co‐GMA). PETr/PP‐EP has shown greater dispersed phase size reduction, a more solid‐like complex viscosity behavior and larger storage modulus at low frequencies in relation to PETr/PP blend. For both investigated blends, mechanical properties indicated an improvement in both elongation at break and impact strength with increasing compatibilizer content. PETr/PP‐EP blends showed improved performance for the same level of compatibilizer content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41892.  相似文献   

3.
Polypropylene (PP) and acrylonitrile–butadiene–styrene (ABS) blends were prepared by a melt extrusion process. PP‐g‐acrylic acid was used as a compatibilizer. Blends with various compositions of PP, compatibilizer, and ABS were prepared and studied for morphological and mechanical properties. PP‐rich ternary blends showed good morphological and mechanical properties. The use of 5 wt % PP‐g‐acrylic acid as a compatibilizer resulted in a fine and homogeneous dispersion of the ABS phase in the PP phase. The experimental data of the tensile modulus showed good agreement in PP‐rich compositions with that generated from Kerner's model with perfect adhesion. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1731–1741, 2001  相似文献   

4.
Fluorescent whitening agents (FWAs) for laundry detergents have been known and successfully used for decades to provide a valuable contribution to the washing results. The increased sophistication of detergent formulations, which is expected to continue into the 1990s, presents new needs and challenges for the FWA. This paper looks specifically at the development of the heavy duty liquid detergent segment and its influence on FWA formulation and performance characteristics such as processability, compatibility, stability and spotting.  相似文献   

5.
Fluorescent whitening agents (FWAs) and polymeric dye transfer inhibitors (DTIs) are widely used in detergent formulations to combat garment yellowing, fading, and discoloration. We report a new application for these inexpensive, mass-produced, laundry additives as sensitive fluorescence “turn-off” sensors for Cu2+. We show that Cu2+-sensitive FWA–DTI complexes form spontaneously when aqueous solutions of FWA and imidazole-based DTI are mixed. We also show that the imidazole groups present in the resulting fluorescent FWA–DTI complex selectively bind Cu2+, a potent fluorescence quencher, to form nonfluorescent FWA–DTI-Cu2+ complexes. Our Cu2+-sensing FWA–DTI complexes are completely water-soluble and have a Cu2+ detection limit of ~ 0.14 μM in water. Our simple approach not only converts the Cu2+-insensitive FWAs into sensitive fluorescent probes for the metal ion but also significantly enhances the brightness of triazinylaminostilbene FWAs. The present study provides a facile, synthesis-free strategy for producing inexpensive fluorescent sensors for Cu2+. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48915.  相似文献   

6.
In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride‐grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42100.  相似文献   

7.
Potential fluorescent whitening agents (FWAs) containing halogen atoms which intramolecularly quench fluorescence have been synthesised and applied to wool in a number of ways. Application by cold pad-batch methods revealed that the complete displacement of all halogen atoms by nucleophilic groups in wool did not take place. Treatment of these materials with morpholine, sodium carbonate or water was necessary to develop the full potential fluorescence yield of the FWA on the fabric. The fluorescence of FWAs can be quenched by the heavy atom effect, as shown by the fact that no fluorescence was observed when commercial FWAs were applied to brominated wool. If the FWA-treated brominated fabrics were subjected to a reduction treatment then the bromine atoms were removed and the fluorescence of the FWA was restored. Application of the potential FWAs by exhaustion, with thioureadioxide present in the liquor, at high temperatures always led to strongly fluorescent fabrics, implying that the halogen atoms were completely displaced using this application method, but the question remains as to how much of the displacement leads to covalent bonds between the fabric and the FWA.  相似文献   

8.
The paper consides the effects of compatibilization with maleic anhydride grafted polypropylene (PP-g-MAH) on the propertie of immiscible blends of polypropylene (PP) and nylon 6 (N6). We prepared the blends by three different mixing processes; single-step blending, two-step blending with reactive premixing, and two-step blending with nonreactive premixing, to determine the effective mixiing process for fine morphological structure thermal stability, and mechanical properties. Dynamic melt reheological properties were measured to examine the modification of elastic properties by the compatibilizer. In addtion, thermal analysis was also carried out to detect the change in crystallization and thereby to probe the degree of compatibilizaton. The results show that compatibilized blends prepared by teh single-step process exhibit improved phase morphology, thermal stability, and mechanical properties for dried conditions, compared with other blend types. Finally, the water absorption test indicates that the added compatibilizer yields enhanced water resistance in spite of the strong intrinsic hydrophilicity of N6. In particular, two-step blending with reactive premixing is most effective in improving water resistance and reducing degradation of mechanical properties after moisture absorption.  相似文献   

9.
This work aims to study the effects of date stone flour (DSF) on morphology, thermal, and mechanical properties of polypropylene (PP) composites in the absence and presence of ethylene‐butyl acrylate‐glycidyl methacrylate (EBAGMA) used as the compatibilizer. DSF was added to the PP matrix at loading rates of 10, 20, 30, and 40 wt %, while the amount of compatibilizer was fixed to the half of the filler content. The study showed through scanning electron microscopy analysis that EBAGMA compatibilizer improved the dispersion and the wettability of DSF in the PP matrix. Thermogravimetric analysis (TGA) indicated a slight decrease in the decomposition temperature at onset (Tonset) for all composite materials compared to PP matrix, whereas the thermal degradation rate was slower. Differential scanning calorimetry (DSC) data revealed that the melting temperature of PP in the composite materials remained almost unchanged. The nucleating effect of DSF was however reduced by the compatibilizer. Furthermore, the incorporation of DSF resulted in the increase of stiffness of the PP composites accompanied by a significant decrease in both the stress and strain at break. The addition of EBAGMA to PP/DSF composites improved significantly the ductility due to the elastomeric effect of EBAGMA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Composite films containing various percentages of banana starch and low‐density polyethylene (LDPE) were prepared. The effects of the compatibilizer, banana starch content, and photosensitizer content on the thermal and tensile properties of these films were investigated. The banana starch content was varied from 5 to 20 wt % of LDPE, whereas benzophenone was added as a photosensitizer in three different amounts (0.25, 0.5, and 1 wt %) based on LDPE. In these films PE‐graft‐maleic anhydride (PE‐g‐MA) was used as a compatibilizer at 10 wt % banana starch. It was found that the thermal stability of the composite films remained unchanged with respect to the amount of banana starch and benzophenone content. The addition of banana starch had no effect on the melting temperature and degree of crystallinity of the films. Similarly, PE‐g‐MA had no effect on the melting temperature but decreased the degree of crystallinity of the LDPE phase. Benzophenone caused an increase in the melting temperature but decreased the degree of crystallinity of LDPE in the films. Increasing the amount of banana starch decreased the tensile properties of the composite films. The addition of PE‐g‐MA as a compatibilizer increased the tensile properties compared with the uncompatibilized films. However, benzophenone had no effect on the tensile properties of the blend films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2717–2724, 2006  相似文献   

11.
This research investigated the effects of a compatibilizer of maleated polybutadiene‐grafted polypropylene (MAPB‐g‐PP) on the properties of wood‐flour/polypropylene composites through the analysis of mechanical properties, water absorption, thermogravimetry, differential scanning calorimetry, and scanning electronic microscopy. The results demonstrate that the mechanical properties of composites were significantly increased; the thermal stability and water absorption were improved. The crystallization temperature and crystallinity were decreased. These improvements have been attributed to the strong interfacial interaction of MAPB‐g‐PP with both wood and polypropylene. J. VINYL ADDIT. TECHNOL., 26:17–23, 2020. © 2019 Society of Plastics Engineers  相似文献   

12.
影响荧光增白剂在塑料中增白效果因素的研究   总被引:2,自引:0,他引:2  
罗磊乔辉  吴立峰 《塑料》2006,35(4):80-84
通过测色仪对注塑色板白度测试表征荧光增白剂的增白效果,研究了荧光增白剂在PP、ABS、LDPE中增白效果的影响因素。研究表明,荧光增白剂在各塑料基体中添加量超过一定值时会析出团聚,降低了增白效果,这个过程通过相差显微观察和试样反射光谱曲线加以证实;对比了R型和A型两种TiO2对荧光增白剂增白效果的影响,得出R型TiO2较A型TiO2降低了增白效果,试样白度提升率在ABS和PP中分别降低了45·6%和26·4%;将荧光增白剂的母粒形式与粉体形式的增白效果进行对比,得出母粒添加法试样的白度比粉体添加法试样高5~10的结果。  相似文献   

13.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

14.
The adsorption of two widely used fluorescent whitening agents (FWAs) on unbrightened cotton fabrics has been investigated as a function of temperature, hardness of the wash liquor, initial concentration of FWA in solution, and fabric to wash liquor ratio. Sorption efficiencies of FWAs have been studied using a UV spectrophotometry technique. A mechanistic model has been developed to describe the dissolution process of FWAs, convective mass transport into the fabrics, diffusion in the stagnant layer to the fabrics' surface, and adsorption of FWAs on cotton fabrics. Dual porosity of the fabrics (inter‐yarn and intra‐yarn porosity) has been considered by allowing two different regions (outer and inner areas of the cotton fabrics) where FWAs molecules can diffuse and adsorb. Good agreement between experimental and predicted whiteness benefit by the proposed mathematical model has been observed for the range of variables considered. © The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of 2017 American Institute of Chemical Engineers AIChE J, 64: 1305–1316, 2018  相似文献   

15.
In attempts to improve the compatibility of polypropylene (PP) with polyethylene terephthalate (PET), a maleic anhydride grafted PP (PP‐g‐MA) was evaluated as a compatibilizer in a blend of 30/70 wt % PP/PET. PP‐g‐MA was produced from isotactic homopolymer PP utilizing the technique of solid phase graft copolymerization. Qualitative confirmations of the grafting were made by Fourier transform infrared spectroscopy (FTIR). Three different weight percent of compatibilizer, PP‐g‐MA, i.e., 5, 10, and 15 wt % have been used in PP/PET blends. The compatibilizing efficiency for PP/PET blend was examined using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM) of crycrofractured surfaces, and energy dispersive X‐ray spectrum (EDAX). The results show that the grafted PP promotes a fine dispersed phase morphology, improves processability, and modifies the crystallization behavior of the polyester component. These effects are attributed to enhance phase interaction resulting in reduced interfacial tension. Also, the results show that the compatibilizing effects of the three amounts of grafted PP in blend are different and dependent on the amount used. Adding 10 wt % of compatibilizer into blend produced the finest dispersed morphology. Elemental analysis results show that PP is matrix. DSC determination revealed that the melting temperature (Tm) of the PET component declined to some extent by comparison with neat PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3986–3993, 2007  相似文献   

16.
通过熔融共混制备了酒糟(DG)增强聚丙烯(PP)复合材料,考察了DG用量、粒径以及马来酸酐接枝聚丙烯(PP-g-MAH)相容剂对复合材料性能的影响。结果表明,DG的加入使得复合材料的热稳定性和阻燃性能提高;PP/DG复合材料的结晶温度随DG含量的增加而升高,说明DG对PP有异相成核的作用;当粒径为100 μm 的DG用量为10 %(质量分数,下同)时,复合材料的缺口冲击强度相比纯PP提高了55.2 %;一定的粒径范围内,复合材料的力学性能与DG粒径呈正相关;PP-g-MAH含量为2 %,DG含量为10 %的复合材料的拉伸强度比未加相容剂时提高了9.3 %,比纯PP提高了4.1 %;PP-g-MAH的加入使得DG颗粒与PP基体间的界面结合明显改善。  相似文献   

17.
PA6/polypropylene (PP) blends are investigated for obtaining balanced strength and toughness. The focus of this study is to understand the effect of PP content on mechanical property, water absorption, impact strength, thermal behavior, and morphology of PP in the absence and presence of PP-g-maleic anhydride compatibilizer. In comparison to pure PA6, all blends have higher impact strength with 161 and 124% increase at 5 wt % PP content in uncompatibilized and compatibilized blends (UB and CB), respectively. Morphology of impact fractured samples shows brittle fracture in the case of CB. scanning electron microscope of cryogenically fractured samples show decrease in domain size and change in shape from ellipsoid to spherical, from UB to CB. Then, 75% reduction in water absorption is observed for 50 wt % PP content UB. Postwater absorption yield strength (YS) remains constant above 10 wt % PP in both UB and CB and decrease in YS is less at higher PP content in CB. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47690.  相似文献   

18.
Elastomeric Chlorosulfonated polyethylene (Hypalon®) and thermoplastic Polypropylene (PP) based thermoplastic vulcanizates (TPVs) were prepared in presence of different doses of compatibilizer, maleic anhydride grafted PP (PP‐g‐MA) by employing dynamic vulcanization technique. The effect of incorporation in different proportions of compatibilizer on mechanical, spectral, morphological, thermal, and rheological properties of such TPVs was studied and the same were compared to that of virgin PP and amongst themselves. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between Hypalon® and functionalized compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two‐phase morphologies were clearly observed by scanning electron microscopic studies. The Tg values of Hypalon® was modified in the TPVs as exhibited by differential scanning calorimetric studies. TGA studies indicated the increase in thermal stability of all TPVs with respect to the elastomeric Hypalon®. Rheological properties showed that the compatibilizer reduces the melt viscosity of TPVs and thus facilitates the processibility of such TPVs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40312.  相似文献   

19.
The thermal properties of biaxially blown poly(etherimide) (PEI) films containing a thermotropic liquid crystalline polymer (TLCP) were studied using differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction and dynamic mechanical thermal analysis. The effects of the compatibilizer and thermal annealing on the thermal properties of biaxially oriented TLCP films were investigated. Though the compatibilizer (poly(ester imide)) improved deformation of the TLCP phase (poly ester amide) and adhesion between the matrix and the TLCP phase, which improved mechanical properties, it did not significantly affect the thermal properties of the in situ composite films. The film degradation behavior corroborated the role of the compatibilizer. Since a relatively small amount of TLCP (10 wt%) was added to the matrix and the matrix PEI was amorphous, the effect of annealing on the TLCP structure was not obvious. By the same token, while the effect of the deformation in the circumferential direction (a change in the blow‐up ratio) was manifest in mechanical property improvements, its effect on the thermal properties was not obvious. All films showed similar thermal expansion behaviors, regardless of the thermal history and of the compatibilizer addition. Thus, there is an optimum amount of the compatibilizer required to obtain optimal mechanical properties for in situ composite films without causing a deterioration of their thermal properties. Polym. Eng. Sci. 44:1419–1428, 2004. © 2004 Society of Plastics Engineers.  相似文献   

20.
以马来酸酐(MAH)为接枝单体、丙烯酸-2-羟乙酯为共聚单体,利用熔融接枝技术对聚丙烯(PP)进行改性;以MAH/丙烯酸-2-羟乙酯熔融接枝改性PP为相容剂,研究相容剂对PP/玻璃纤维复合材料结构和性能的影响。结果表明:与未接枝PP相比,熔融接枝PP分子上接枝了MAH和—OH基团,而且熔融接枝反应对PP的熔点和热稳定性具有明显影响。另外,随着接枝PP含量的增加,PP/玻璃纤维复合材料的力学性能明显改善。当接枝PP含量为15%时,复合材料的拉伸强度提高了32%,冲击强度提高了13%,表明采用熔融共接枝工艺制备的PP具有优良的增容、偶联和分散效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号