首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐density polyethylene (LDPE)/silicate nanocomposites were prepared by the melt compounding and solution blend methods using unmodified LDPE polymer and layered silicates with different aspect ratio. X‐ray diffraction (XRD) analysis performed on composites obtained by dispersing the organosilicates in molten LDPE evidenced an exfoliated or partially exfoliated structure for the low aspect ratio silicate (laponite) in contrast to the high aspect ratio silicate (montmorillonite), which led to the formation of intercalated nanocomposites. With regard to the preparation method, the melt compounding method was more effective in forming exfoliated/highly intercalated LDPE nanocomposites compared with the solution blend method (using CCl4 as a solvent). A gradual increase in crystallization temperatures (Tc) with increasing laponite content for LDPE‐organolaponite nanocomposites was revealed by differential scanning calorimetry (DSC) measurements. Thermogravimetric analysis and tensile measurements results indicated that thermal stability and elastic modulus increment were more prevalent for nanocomposites prepared using organomontmorillonite as filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The increasing number of indwelling medical materials and devices are connected with infections caused by yeast, especially Candida albicans. This pathogen produces biofilms on synthetic materials, which facilitates adhesion of the organisms to devices and renders them relatively refractory to medical therapy. Since antimicrobial polymer nanocomposites present one of the promising possibilities, this study explores a new approach to achieving this goal by developing nanocomposite based on low density polyethylene (LDPE) with clay mineral vermiculite as an active carrier for antifungal compound. The set of LDPE/clay nanocomposite with increasing amount of antifungal nanofiller was prepared by melt compounding procedure. As antifungal agent was selected generally used active substance ciclopiroxolamine and this compound was loaded into natural vermiculite through ultrasound technique. The structure of all prepared samples was studied by X-ray diffraction analysis and Fourier transforms infrared spectroscopy. Further thermal properties of polyethylene/clay nanocomposites were investigated by thermogravimetric analysis and the surface properties were evaluated by light optical microscopy, scanning electron microscopy and atomic force microscopy. From mentioned characteristics, we conclude that presence of nanofiller in LDPE primarily causes shift of thermal degradation to higher temperatures and increasing of microhardness. All prepared LDPE nanocomposites possess an excellent and prolonged antifungal activity against Candida albicans.  相似文献   

3.
The nanocomposites of low‐density polyethylene contain graphene (LDPE/Gr) and low‐density polyethylene contains carbon‐nanotubes (LDPE/CNTs) with different Gr loadings (0.5, 1, and 3 wt%) were formulated with a melt‐mixing method. The distribution of Grs in LDPE was detected by scanning electron microscopy. In this study, morphological, electrical, thermal, tensile, and rheological properties of nanocomposites were comparatively investigated. The outcomes were reviewed and it was recognized that LDPE/Gr nanocomposites reveal superior properties than LDPE/CNTs nanocomposites at the same loadings. The superior performance of LDPE/Gr nanocomposites attributes to the large aspect ratio of Gr and its two dimensional flat surfaces which effect in increasing physical interlinking with LDPE chains and expanded the interface zone at filler–LDPE interface. It was also identified that the achieved results for LDPE/CNT nanocomposites, which has a compact surface area and linkage with LDPE, are less noticeable than similar Gr compounds due to higher interfacial interactions between Gr and LDPE. The thermomechanical results of LDPE/Gr nanocomposites have been studied and the influence of nanoscaled strengthening in the thermoplastic matrix has been investigated. The existence of Gr limits the flexibility of LDPE chains, increases the rigidity and the strength of the LDPE‐nanocomposites. This study compares how a flat or roll structure of carbon nano‐structure additive (Grs vs. CNTs) can change the various properties of LDPE nanocomposites. J. VINYL ADDIT. TECHNOL., 25:35–40, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
Polyethylene–montmorillonite nanocomposites were prepared in the melt applying various ultrasonic powers (231, 347, and 462 W) and temperatures (185, 200, and 215 °C) in the presence of itaconic acid. Dispersion–exfoliation of montmorillonite and in situ low density polyethylene functionalization with itaconic acid were carried out by ultrasound assisted extrusion process. Clay dispersion and exfoliation was evaluated by X‐ray diffraction (XRD) and electronic microscopy (STEM). The degree of grafting itaconic acid into low density polyethylene (LDPE) was determined by infrared analysis (FTIR) and titration technics. Ultrasound‐treated nanocomposites showed improved clay dispersion compared with non‐treated ones. Mechanical properties, XRD, and STEM microscopy indicated that the grafting level, clay dispersion, and exfoliation was directly influenced by IA concentration, temperature, and ultrasonic energy. For instance, the itaconic acid grafted into LDPE was improved from 0.13% to 0.71% when ultrasound power was increased and when temperature was reduced. The modulus was enhanced up to 225 MPa when the ultrasound power was increased up to 462 W. The nanocomposites decomposition temperature, determined by thermogravimetric analysis, was increased nearly 20 °C when 1% w/w itaconic acid was used. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46260.  相似文献   

5.
Two types of nanocomposites have been fabricated by a ball‐milling technique. The first type consists of untreated titanium dioxide (TiO2) incorporated into low‐density polyethylene (LDPE). For the second one, TiO2 filler chemically treated with trisilanol phenyl–polyhedral oligomeric silsesquioxane (TP–POSS) as compatibilizing agent was ball‐milled with LDPE. All specimens were tested by microstructure analysis and thermal, dielectric characterization techniques. Microstructure analysis by atomic force microscopy and scanning electron microscopy show clearly an increased dispersion in presence of POSS. Scanning electron microscopy even shows the formation of a particular structure due possibly to interactions between functionalization. It was observed that the modification of the surface of TiO2 by the POSS decreased the dielectric loss. All nanocomposites containing treated TiO2 revealed an improvement in thermal conductivity, with the most distinct value of 19% in case of LDPE containing 5 wt % treated TiO2. The incorporation of TiO2 fillers seems to reduce the dielectric breakdown strength of the nanocomposites. However, nanocomposites containing 3 and 5 wt % treated TiO2 have exhibited a slightly enhancement in dielectric breakdown strength up to 5%. The improvement in surface resistance to partial discharge was found in all nanocomposites specimens, especially for both types of composite containing 7 wt % untreated and treated TiO2. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46095.  相似文献   

6.
A comparative study of the ozonization of low density polyethylene (LDPE) and high density polyethylene (HDPE) was carried out. A grafting study of acrylic acid (AA), N,N‐dimethylamino‐2‐ethylmethacrylate (MADAME) and vinyl phosphonic acid (VPA) on LDPE and HDPE was performed in mass and solution. The ozonized polyethylene and the grafting polymers were characterized by IR spectroscopy and elementary analysis. Ion exchange membranes were prepared from grafted copolymers and characterized by the exchange capacity and electrical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4423–4429, 2006  相似文献   

7.
The solution behavior of metal maleate low density polyethylene graft ionomers (LDPE‐g‐MAMe) in extremely dilute and dilute solutions was investigated in this study. The concentration region was divided into three parts because of the different viscosity–concentration relations of these ionomers. The ηsp/CC relations of zinc maleate low density polyethylene graft ionomers (LDPE‐g‐MAZn) were studied in detail and compared with those of low‐density polyethylene and low‐density polyethylene‐g‐maleic anhydride. Finally, the viscosity–concentration relations of LDPE‐g‐MAMe (Na, K, La) were also studied and compared with one another. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1481–1486, 2001  相似文献   

8.
Nanocomposites of low‐density polyethylene/polyhydroxybutyrate (LDPE/PHB) containing organomodified montmorillonite (OMMT) and/or LDPE grafted maleic anhydride (LDPE‐g‐MAH) were prepared with a wide range of composition ratios using a vertical co‐rotating twin‐screw microCompounder. To infer the effect of OMMT and LDPE‐g‐MAH on the thermal stability of prepared nanocomposites, all samples were characterized by thermogravimetric analysis while changing clay and compatibilizer contents. Accordingly, two commonly used kinetic models (Coats–Redfern and Horowitz–Metzger) were employed to correlate the thermal stability of the samples with kinetic parameters, including activation energy and pre‐exponential factor. Furthermore, morphological features of LDPE/PHB in the presence or absence of OMMT and LDPE‐g‐MAH were studied using scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction analysis. It was found that for a specific OMMT composition ratio (1 wt %), the thermal stability is enhanced due to an exfoliated structure. However, for samples containing more organoclay (>=3 wt %), the thermal stability was reduced showing the competition between the barrier effect of organoclay platelets and the catalyzing effect of ammonium salts. Moreover, when using LDPE‐g‐MAH as compatibilizer, it acted as a good coupling agent in all compositions in LDPE major phase systems in contrast to PHB major phase samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45922.  相似文献   

9.
The present study deals with the processing and characterization of cellulose nanocomposites natural rubber (NR), low‐density polyethylene (LDPE) reinforced with carrot nanofibers (CNF) with the semi‐interpenetrated network (S‐IPN) structure. The nanocomposites were compounded using a co‐rotating twin‐screw extruder where a master‐batch of NR and CNF was fed to the LDPE melt, and the NR phase was crosslinked with dicumyl peroxide. The prepared S‐IPN nanocomposites exhibited a significant improvement in tensile modulus and yield strength with 5 wt % CNF content. These improvements are due to a better phase dispersion in the S‐IPN nanocomposites compared with the normal blend materials, as demonstrated by optical microscopy, electron microscopy and ultraviolet–visible spectroscopy. The S‐IPN nanocomposite also displayed an improved crystallinity and higher thermal resistance compared with NR, CNF, and the normal blend materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45961.  相似文献   

10.
Francis Reny Costa 《Polymer》2005,46(12):4447-4453
Low density polyethylene (LDPE)/Mg-Al layered double hydroxide (LDH) nanocomposites have been synthesized with different compositions by melt-mixing technique using maleic anhydride grafted polyethylene as compatibilizer. LDH has been modified by sodium dodecylbenzene sulfonate using reconstruction method and characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The nanocomposites are characterized by different techniques such as, transmission electron microscopy (TEM), XRD and rheology. The TEM analysis shows a complex nature of particle dispersion in the polymer matrix with wide distribution of particles sizes and shapes. The rheological analysis showed significant changes in linear viscoelastic responses of the composites, even at very low concentration (2 phr) of LDH materials, in comparison to the pure polymer in low frequency regime in dynamic frequency sweep experiments. These changes are related to the LDHs-polymer chains interactions resulting in network-like structure.  相似文献   

11.
Montmorillonite (MMT) was first modified with dodecyl dimethylbenzyl ammonium (DDA) salt and octadecyl trimethyl ammonium (OTA) salt. Then low density polyethylene (LDPE)/organic montmorillonite (OMMT) nanocomposites were prepared by twin-screw extruder and hot-press. Transmission electron microscopy (TEM) results showed that OMMT layers were homogeneously intercalated into the LDPE matrix. In terms of MMT, the modification effect of OTA is superior to that of DDA. CO2 and O2 barrier properties of nanocomposites were increased by 7 times and 4 times with 0.5 wt.% OTA-MMT loading, respectively. At 2 wt% OTA-MMT loading, water vapor permeability of LDPE has also decreased about 2.5 times. Compared with pure PE film, 49.5% and 178% improvement of tensile strength of nanocomposites films were obtained by addition of only 4 wt.% DDA-MMT and OTA-MMT, respectively. In addition, with only 0.5 wt.% OMMT loading, the onset degradation temperature of nanocomposites increases by 23°C and 26°C for LDPE/DDA-MMT and LDPE/OTA-MMT, respectively.  相似文献   

12.
The influence of the processing parameters on the synthesis of low‐density polyethylene (LDPE)/organically modified montmorillonite (OMM) nanocomposite films was studied using experimental design. Intercalation in the nanocomposites was analysed using X‐ray diffraction and verified using atomic force microscopy. Four direct melt processing parameters were studied to obtain surface maps of intercalation in the nanocomposites: concentration of OMM (clay‐%), concentration of Polybond® 3149 (compatibilizer‐%), mixing temperature (Tmix) and mixing time. An ANOVA validated the polynomial function, and intercalation maps from response surface methodology (RSM) were obtained. The clay‐% parameter had the most significant effect, and Tmix showed no significant effect on intercalation (p < 0.05). A strong synergic interaction between clay‐% and compatibilizer‐% was observed, which is not possible to detect using univariate experiments. RSM provides a powerful tool for choosing the best processing conditions that lead to formulations with the highest intercalations by considering the main factors and their interactions. © 2013 Society of Chemical Industry  相似文献   

13.
To study the effect of nano conducting materials on the direct current (DC) dielectric properties of low density polyethylene (LDPE), polypyrrole nanospheres are prepared by the soft template method and then melt-blended with LDPE to obtain LDPE/polypyrrole nanocomposites. The micro-structure, space charge distribution, thermally stimulated depolarization current, DC conductivity and DC breakdown strength of the nanocomposites are investigated. The results show there is interaction between polypyrrole nanospheres and LDPE, which will not affect the crystal structure of LDPE, but slightly increase the crystallinity of LDPE/polypyrrole nanocomposites. Polypyrrole nanospheres can introduce deep traps in LDPE to capture space charge carriers, which will suppress the accumulation of space charges in LDPE and reduce the DC conductivity. The DC breakdown strength of LDPE/polypyrrole nanocomposites is improved slightly by adding a small amount of polypyrrole nanospheres.  相似文献   

14.
Modification of low‐density polyethylene (LDPE) with vanillin to obtain flavored packaging film with improved gas barrier and flavor‐releasing properties has been studied. The modification of LDPE with vanillin was monitored by Fourier transform infrared spectroscopy, wherein the appearance of new peaks at 1704.7, 1673.6, and 1597.2 cm?1 indicates the incorporation of vanillin into LDPE matrix. Films of uniform thickness were obtained by the extrusion of modified LDPE. Modified LDPE was found to have significantly higher gas barrier properties and grease resistance. Sensory quality of food products viz, doodhpeda (milk‐based solid soft sweet), biscuit, and skimmed milk powder packed in LDPE‐vanillin film showed that the doodhpeda sample had clearly perceptible vanilla aroma, whereas biscuit had marginal aroma and skimmed milk powder did not have noticeable aroma. When viewed in the light of imparting desirable vanilla aroma, results of the study indicated that LDPE‐vanillin film has better prospects as a packaging material for solid sweets with considerable fat content when stored under ambient conditions. The release of vanilla aroma was further confirmed by gas chromatography–mass spectrometery analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Polymer nanocomposites filled with low volume fractions of carbon nanofibers (CNFs) were prepared by melt‐compounding. Three types of polymers with different crystallization behavior, i.e., weakly‐crystallized low density polyethylene (LDPE), strongly crystallized high density polyethylene (HDPE) and amorphous polystyrene (PS), were selected as matrices for the nanocomposites. The effects of polymer crystallization on the dispersion of CNFs were examined. Optical and electron microscopic examinations revealed that the dispersion of CNFs in the nanocomposite matrices was strongly depended on the crystallization behavior of polymer matrices. The CNFs were found to disperse uniformly in weakly crystallized LDPE and amorphous PS matrices, but agglomerated in HDPE due to its strong crystallization tendency. Such a distinct dispersion behavior of CNFs in polymers had a profound effect on the electrical properties of the nanocomposites investigated. The PS/CNF nanocomposites exhibited the lowest percolation threshold. The HDPE/CNF nanocomposites showed the largest percolation threshold due to the CNF agglomeration within the amorphous phase of HDPE. POLYM. ENG. SCI., 48:177–183, 2008. © 2007 Society of Plastics Engineers  相似文献   

16.
The effect of silica nanoparticles on structure and morphology of low density polyethylene (LDPE) was investigated. To prepare the nanocomposites, SiO2 nanoparticles were dispersed in a LDPE with cryogenic high‐energy ball milling (HEBM). Films of these nanocomposites with different loads (0%, 1.8%, 2.3%, 3.3%, 7.9%, 16.5% wt/wt) were obtained by hot pressing. Differential scanning calorimetry (DSC) was used to study the nonisothermal melting and crystallization of the films. The morphological characterization was done by atomic force microscopy (AFM). To determine the most representative periodical spacing associated to the LDPE crystallites, a new approach based on the first moment of the frequency distribution obtained from the fast Fourier transform of the AFM phase contrast images was used. Ultracryomicrotomed surfaces of the nanocomposites revealed an efficient dispersion of the nanoparticles throughout the polymer bulk. Although HEBM promotes the formation of the metastable monoclinic phase in the LDPE, nanocomposites in the form of films did not show important differences in their thermal and morphological characteristics, suggesting that there are not high interactions between the polar nanoparticles and the nonpolar polymer and that thermal treatment is enough to eliminate the specific microstructure induced by HEBM. POLYM. COMPOS., 33:2009–2021, 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
The incorporation of cellulosic fibers into polyethylene matrices was studied in this work, by dispersion of fluff pulp from maritime pine in a hot polymer solution, followed by co‐precipitation of the solid components by cooling at room temperature. The above method was found suitable for proper wetting and dispersion of fibers in the polymeric matrix, as compared with melt compounding. Unmodified low density polyethylene [LDPE], modified LDPE with maleic anhydride grafted linear low density polyethylene [M‐LLDPE] and a copolymer of acrylic acid and n‐butyl acrylate polyethylene [(AA/n‐BA)‐LDPE], were used as matrices for the preparation of fiber reinforced composites. The thermal properties of these composites were determined using differential scanning calorimetry and thermogravimetric analysis. The incorporation of cellulosic fibers results in a decrease of the crystallinity of the polymer matrix, as they act as inert material. In addition, the appropriate tests were run in order to determine the density and tensile properties of the composite specimens prepared by compression molding, with filler content ranging from 10 to 40% (w/w). Composites based on modified LDPE showed improved mechanical properties. The Takayanagi model, applied to predict the Young's modulus of composites, was in very good agreement with the experimental data obtained in this work. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
This paper studies the morphology and tensile properties of nanocomposite foams of blends of low‐density polyethylene (LDPE) and poly(ethylene‐co‐vinyl acetate) (EVA). Preparations of LDPE/EVA nanocomposites were conducted in an internal mixer, and then samples were foamed via a batch foaming method. Morphology of the nanocomposite blends and nanocomposite foams was studied by X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. Morphological observations showed that nanoparticle dispersion in the polymeric matrix was affected by the blend ratio in a way such that EVA‐rich samples had a better dispersion of nanoclay than LDPE‐rich ones. In addition, the tensile properties of the nanocomposite foams were related to different variables such as blend ratio, clay content, and foam density. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
The properties of the polymer nanocomposites (PNCs), consisting low density polyethylene (LDPE) and magnesium oxide nanoparticles (MgO‐NPs), were systematically discussed in this paper. The shear mixing time and MgO concentration were considered as the two factors affecting the dispersion state, which was found to be effective to change the crystallinity and the mechanical performance of MgO/LDPE PNCs. A reduction in the dynamic shear viscosity was observed when the concentration of MgO‐NPs at a relative low level, which was also dominant by the dispersion states of MgO‐NPs. Evident enhancement of the static yield stress was revealed only by introducing a minute amount of MgO‐NPs (0.25 wt %). Meanwhile, the elastic and loss modulus were also found to be dependent on the dispersion state of MgO‐NPs. A positive increase in dielectric permittivity was identified by uniaxial stretching the MgO/LDPE PNCs strips owing to the orientation enhancement of internal microstructure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43038.  相似文献   

20.
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low‐density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene‐co‐glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC‐LDPE blends. However CYC‐LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 219–237, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号