首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 201 毫秒
1.
低活性粉煤灰颗粒与水化产物界面粘接不良,是导致粉煤灰水泥强度等性能较差的根本原因.本文将预水化的低活性粉煤灰在适宜温度下进行热处理,利用粉煤灰颗粒表面水化产物脱水相可再水化的原理,达到改善粉煤灰颗粒与水化产物的界面粘结性能.探讨了处理温度、粉煤灰粒度、预水化程度等参数对粉煤灰活性指数的影响.结果表明:在750℃处理时,粉煤灰表面水化产物分解生成低结晶度β-C2S,该矿物可再水化,进而改善了粉煤灰颗粒与水化产物的界面粘结.预水化程度为5%~6%(水化深度0.22~0.27 μm)时,处理后粉煤灰活性指数最高.该方法对粗粉煤灰活性改善效果较好,且对早期活性指数的提高幅度较大.  相似文献   

2.
碱矿渣水泥水化产物不同于硅酸盐水泥,会产生不同的碳化行为.以水玻璃与NaOH为碱组分制备碱矿渣水泥石,采用X-射线衍射(XRD)、红外光谱(FF-IR)与综合热分析(TG-DSC)研究了碱矿渣水泥石的碳化产物.结果表明:碱矿渣水泥石碳化生成的CaCO3的存在形式主要为方解石,球霰石和文石含量较少,随碳化龄期延长,文石与球霰石含量增加;以模数1.0~1.5的水玻璃为碱组分的碱矿渣水泥石碳化后,出现钠的碳酸盐结晶相;碱矿渣水泥石碳化脱钙后生成富硅的C-S-H凝胶,C-S-H凝胶的聚合度增加.  相似文献   

3.
粉煤灰水泥基材料的水化产物   总被引:15,自引:1,他引:15  
用热重仪-差示扫描量热仪、扫描电子显微镜、透射电子显微镜、X射线能量散射、高分辩电子显微镜、压汞仪,测定了粉煤灰水泥基材料水化产物的形貌特征、微观结构、化学组成及水泥石的孔结构,讨论了水化产物性质及水泥石孔结构随粉煤灰掺量的变化规律。结果表明:粉煤灰的大量掺加,可以改善凝胶的化学组成。水化后期,粉煤灰与Ca(OH)2及由熟料水化生成的高n(Ca)/n(Si)的水化硅酸钙(C—S—H)凝胶发生二次水化反应,生成低n(Ca)/n(Si)的C—S—H凝胶,此种凝胶的固碱能力强,可减少碱-集料反应的危害性。同时,二次水化产物能够填充那些对水泥石强度和耐久性极为不利的孔隙空洞,使水泥石的结构更加致密,优化水泥石的孔结构,对提高水泥基材料的耐久性作用极大,为进一步提高工业废渣利用的技术水平奠定了基础。  相似文献   

4.
常钧  房延凤  李勇 《硅酸盐学报》2014,42(11):1377-1382
废弃水泥石、钢渣等碳酸化固定CO2不仅可以缓解温室效应还可以实现废弃物的再利用,同时制备出性能优良的建材制品。为了研究废弃水泥石矿物组成的碳酸化机理,探讨了钙硅比对水化硅酸钙加速碳化的影响。结果表明:随着钙硅比增加,水化硅酸钙(C-S-H)碳化率逐渐降低,高钙硅比的C-S-H具有相对粗大的孔结构使得早期的碳化速率增加;碳化产物中文石、球霰石、方解石在不同钙硅比时所占比例不同,钙硅比≤0.67时文石占较大比例,钙硅比≥1.00时方解石为主要碳化产物,钙硅比=0.83时球霰石含量最大;加速碳化条件下形成的碳酸钙分解温度分成两部分,在400~620℃范围内文石和球霰石都分解,方解石在650~800℃范围内分解。  相似文献   

5.
研究了氧化石墨烯(GO)对水泥水化进程及其主要水化产物氢氧化钙(CH)、水化硅酸钙凝胶(C-S-H)的影响。采用原子力显微镜、透射电镜等对所用GO进行了表征,采用水化热、X射线衍射分析以及热重分析等方法对不同GO掺量的新拌水泥浆体水化程度以及水化产物含量等进行了测量。结果表明:GO的掺入对水泥水化进程并无明显影响,即GO并不存在促进水化的作用,但是GO的掺入可以影响水化产物尤其是氢氧化钙的结晶过程和形态;GO对水泥浆体硬化后形成的凝胶孔特征有重要影响,随着GO掺量的增加,能够使凝胶孔中存有更多的自由水,并在一定程度上细化、封闭孔结构;GO的存在不仅对六方片状晶体的生成有明显抑制作用,并且能够细化晶体氢氧化钙的尺寸。  相似文献   

6.
研究了不同掺量非晶态C12 A7/CaSO4·2H2 O体系对OPC净浆凝结时间、流动性和早期抗压强度的影响,通过XRD和SEM对水化产物的物相和形貌进行了表征,并采用量热试验对其水化历程进行了分析。结果表明:非晶态C12 A7/CaSO4·2H2 O体系掺量为5%,非晶态C12 A7与CaSO4·2H2 O的质量比为1.0∶1.0时,非晶态C12 A7/CaSO4·2H2 O体系能够促进C3 S和C2 S的水化,生成C-S-H凝胶相互交织搭接形成网络结构而促进凝结;同时也促使OPC水化早期产生大量针状晶体钙矾石,钙矾石与前期生成的C-S-H凝胶相互填充,使水化产物结构密实,提高早期强度。  相似文献   

7.
采用XRD、精密水化微量热、ESEM、EDS和NMR等测试技术,研究了硅灰和聚羧酸减水剂对C3S水化的影响。结果表明:聚羧酸减水剂的掺入抑制了C3S的早期水化放热,而硅灰消耗了C3S水化产生的CH,促进了C3S的水化.两者都使C3S水化产物C-S-H凝胶的形貌由针棒状发生了转变,且其硅氧四面体的聚合状态有较大不同,尤其是硅灰显著影响了C-S-H凝胶硅氧四面体聚合状态中Q1、Q2的含量。  相似文献   

8.
通过对不同高炉镍铁渣掺量的水泥-高炉镍铁渣粉复合胶凝材料水化放热速率、高炉镍铁渣粉的反应程度、硬化浆体化学结合水含量以及水化产物中C-S-H凝胶Ca/Si的测定,分别研究了水泥-高炉镍铁渣粉复合胶凝材料的早期、中长期水化进程、浆体微观形貌以及水化产物特点等水化特性.研究结果表明:高炉镍铁渣的掺入会降低水化放热速率,并推迟水化加速期放热峰的出现时间;在复合胶凝体系中,随着高炉镍铁渣粉掺量的增大,其反应程度和硬化浆体中化学结合水含量将降低.复合胶凝材料水化生成的C-S-H凝胶的Ca/Si低于水泥,且随着水化的进行呈降低趋势;高炉镍铁渣粉中的Al,在水化过程中会取代部分Si进入C-S-H凝胶中,形成C-A-S-H凝胶.  相似文献   

9.
采用水玻璃(复掺氢氧化钠调整模数)激发粒化高炉矿渣活性制备碱矿渣净浆试样.采用抗压强度测试、X-射线衍射(XRD)、综合热分析(TG-DSC)等技术手段研究了激发剂碱浓度(4%、6%、8%)及模数(0.75、1.00、1.50、2.00)对碱矿渣胶凝材料抗压性能及水化产物的影响.研究结果表明:激发剂模数较低时(0.75和1.00),碱矿渣胶凝材料抗压强度随着碱浓度的增加而呈下降趋势;激发剂模数较高时(1.50和2.00),试件强度在碱浓度为6%时达到最大值.在相同碱浓度下,激发剂模数为1.50时试件抗压强度值最大.碱矿渣胶凝材料主要水化产物为C-S-H凝胶,同时伴有C-A-S-H凝胶生成.另外观测到少量斜方钙沸石(CaAl2Si2O8· 4H2O)的生成.在部分配合比中还观测到水滑石(Mg6Al2(OH)16CO3· 4H2O)的存在.碱浓度较高的碱矿渣胶凝材料中生成了较多的C-S-H水化产物.激发剂模数较高时(1.50和2.00),更有利于碱矿渣中C-S-H水化产物的生成.碱浓度/模数较低时, C-S-H产物结晶度有所提高.相较于C-S-H凝胶结晶度,其生成量对碱矿渣胶凝材料抗压强度的影响更为显著.  相似文献   

10.
研究了热处理后的旧硬化水泥浆中脱水相含量对其再水化性能的影响,通过制备不同脱水相含量的脱水水泥石粉(W/C=0.5,W/C=0.3),采用标准稠度用水量、初凝时间、水化程度和抗压强度的测试,研究了其再水化性能。试验表明:在一定温度下,随着脱水相含量的增大,脱水水泥石粉的标准稠度用水量显著增大,初凝时间逐渐缩短,再水化程度发展加快,抗压强度逐渐减小,即热处理后旧水泥石中脱水相的含量影响其再水化性能。  相似文献   

11.
钢渣水化产物的特性(英文)   总被引:2,自引:0,他引:2  
用X射线衍射分析、水化热的测量、化学结合水量的测定、孔结构的测定、扫描电镜观察及强度测试研究了钢渣的水化产物的特性。结果表明:钢渣硬化浆体中主要含有水化硅酸钙(C–S–H)凝胶、Ca(OH)2、惰性组分[RO相、铁酸二钙(C2F)和Fe3O4]和未水化的胶凝相[硅酸三钙(C3S)和硅酸二钙(C2S)];总体而言,钢渣的水化过程与水泥的水化过程相似;钢渣早期的水化速率远低于水泥,但钢渣后期,尤其是90d之后的水化速率高于水泥的。钢渣水化产生的C–S–H凝胶不具有良好的胶凝性能,凝胶之间的相互黏结也不牢固,因此钢渣砂浆的强度很低。  相似文献   

12.
C-S-H及C-S-H脱水相对水泥石结构改性的研究   总被引:5,自引:0,他引:5  
以C-S-H及C-S-H脱水相作水泥水化物沉淀中心的品种。从理论上阐明了它们是具有较大介电常数、较小物理化学不均匀系数、高分散度的晶种物质,故具有优先吸附的界面效应及优先沉淀的结晶中心作用,可缓和原始矿物表面的高浓度的屏蔽效应及界面的近程析晶,使水化物分布均匀、结构致密,从而提高水泥石强度。C-S-H及C-S-H脱水相两者中,尤以后者作用更显著。  相似文献   

13.
Hydration of β-dicalcium silicate was carried out under hydrothermal conditions at different temperatures from 50 °C to 400 °C up to 5 days by using two methods to start the reactions at room temperature or at a desired reaction temperature. 9 C-S-H phases with the same Ca/Si ratio as precursor (γ-dicalcium silicate hydrate and α-dicalcium silicate hydrate and dellaite), Ca-rich compositions (jaffeite and reinhardbraunsite), Si-rich compositions (Ca8Si5O18, kilchoanite and foshagite), and C-S-H gel were obtained at the initial stage of the hydration of β-dicalcium silicate. The reaction products were different in dependence in the hydrothermal processes. It was found that α-dicalcium silicate hydrate was directly formed from β-dicalcium silicate at low temperatures below 220 °C. The products obtained at above 240 °C were different in dependence in the hydrothermal processes, due to the different decomposition route of γ-dicalcium silicate hydrate, the initial product from β-dicalcium silicate. The room temperature mixing method gave reinhardbraunsite and kilchoanite through Ca8Si5O18. In the case of the high temperature mixing method, γ-dicalcium silicate hydrate decomposed to from Ca8Si5O18 and reinhardbraunsite with jaffeite, then Ca8Si5O18 decomposed to from jaffeite and kilchoanite, and final products at 400 °C were reinhardbraunsite and foshagite which was formed from kilchoanite.  相似文献   

14.
仲心卓  李路帆  姜义  林忠财 《硅酸盐通报》2021,40(11):3677-3684
为开发钢渣用于高温环境的潜力,最大限度地提高钢渣的综合利用率,通过强度试验、热重分析(TGA)、X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)等测试手段探讨了钢渣加速碳化制品承受不同高温后的抗压强度、矿物相演变和微观结构。结果表明:钢渣加速碳化制品在200~600 ℃范围内的高温处理下,抗压强度得到提高,在400 ℃时达到最大值,为72.4 MPa,较初始强度提高20.5%,钢渣中硅酸钙在高温下进一步发生水化,其水化产物增强了基质连接。当温度达到800 ℃时,钢渣性能发生劣化,强度降低了90.7%,碳酸钙质量分数由24.1%降低至1.6%,而总质量损失可达19.67%,吸水率大幅度提高,且出现贯通试块的裂缝。钢渣加速碳化制品与普通水泥基材料相比,耐高温性能有所提升,但在800 ℃时并无明显优势。  相似文献   

15.
Solubility and structure of calcium silicate hydrate   总被引:4,自引:0,他引:4  
The poorly crystalline calcium silicate hydrate (C-S-H) phases that form near room temperature, which include the technically important C-S-H gel phase formed during the hydration of Portland cement, have a broad similarity to the crystalline minerals tobermorite and jennite, but are characterized by extensive atomic imperfections and structural variations at the nanometer scale. Relationships between the aqueous solubility and chemical structure are reported for specimens formed by different preparation methods and with a broad range of compositions. Both new and previously published data show that these phases generate a family of solubility curves in the CaO-SiO2-H2O system at room temperature. As demonstrated by 29Si magic-angle spinning (MAS) NMR data and by charge balance calculations, the observed solubility differences arise from systematic variations in Ca/Si ratio, silicate structure, and Ca-OH content. Based on this evidence, the solubility curves are interpreted as representing a spectrum of metastable phases whose structures range from purely tobermorite-like to largely jennite-like. These findings give an improved understanding of the structure of these phases and reconcile some of the discrepancies in the literature regarding the structure of C-S-H at high Ca/Si ratios.  相似文献   

16.
Subjected to the wet surrounding, hydrated cement paste (HCP) exposed to high temperature may exhibit rehydration behavior. This paper presents the influence of the dehydration temperature and the initial water/cement ratio on the rehydration activity of dehydrated cement paste (DCP). Original HCPs were prepared with two water/cement ratios of 0.3 and 0.5, respectively, and cured under the fog‐spraying standard condition for 30thinspacedays. The DCP powders used were obtained by grinding dry HCP less than 75µm and then subjecting to different temperatures, up to 900°C. The rehydration properties of DCP were evaluated by the required water for standard consistency, the setting time, the rehydrated compressive strength and the microstructure evolution. X‐ray diffraction (XRD) was employed to identify the crystalline phases before and after rehydration. Experimental results showed that the coupled rehydration effect from the dehydrated hydration products and the initially unhydrated cement determined the rehydration behavior of DCP. The rehydration of DCP strongly depended on the dehydration temperature and the water/cement ratio of the original HCP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
研究协同利用硅钙渣、粉煤灰、水泥和脱硫石膏制备硅酸钙板时,原料配比、蒸养条件对硅酸钙板力学性能、水化产物的影响,并利用XRD、IR和SEM表征了原料的协同水化历程和水化产物的微观结构和表面形貌.试验结果表明:最佳原料配比为硅钙渣60%、粉煤灰24%、水泥10%和脱硫石膏6%;最佳蒸压养护条件为蒸养温度180℃,恒温蒸养时间8 h,硅酸钙板抗折强度满足国家标准强度的D1.3的Ⅱ级要求;随着蒸养温度升高,原料水化依次生成C-S-H凝胶、托贝莫来石和针状硬硅钙石,大量托贝莫来石和硬硅钙石的生成使得硅酸钙板的强度得以提升.  相似文献   

18.
Calcium silicate hydrate (C-S-H) gels are the principal bonding material in portland cement. Their solubility properties have been described, enabling pH and solubilities to be predicted. However, the gels also interact with other components of cements, notably alkalis. C-S-H has been prepared from lime and silicic acid in solutions of sodium hydroxide or potassium hydroxide and by the hydration of tricalcium silicate (C3S) in sodium hydroxide solutions. Analyses of aqueous phases in equilibrium with 85 gels show that the aqueous calcium and silicon concentrations fit smooth curves over the range of increasing sodium concentrations. Where anomalous data occur, they correspond to solids with low lime contents: such gels are tentatively assumed to fall into a region where the presence of another gel phase influences the aqueous composition. Dimensional changes have been observed in the hydration products of C3S as a function of alkali content and these may be relevant to the alkali-silica reaction. The significance of this and other data is discussed with reference to real cement systems.  相似文献   

19.
Calcium silicate hydrate was prepared by hydrothermal reaction between calcium oxide and silica (C/S = 2.0) at a temperature of 205°–215°C and a pressure of 17–19 bar. This reaction with decomposition at 900°C produced highly reactive β-dicalcium silicate (specific surface area 4.55 m2/g) contaminated with small amounts of wollastonite as an impurity. Infrared spectral studies have shown that β-dicalcium silicate prepared at 900°C is less symmetric compared with the control prepared at 1450°C using boron trioxide as a stabilizer. The specific surface area of β-dicalcium silicate decreased with temperature. The hydration studies were done by determining the nonevaporable water, calcium hydroxide (CH) contents, and specific surface area of the hydrated samples. X-ray diffraction studies were also done. The results showed that prepared β-dicalcium silicate is highly reactive. Calcium chloride (1.0 wt%) and gypsum retard the hydration. Possible causes of high reactivity have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号