首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
为提高Fe基载氧体性能以及研究锡盟褐煤化学链燃烧特性,以硝酸盐试剂及CuO粉末为原料,通过共沉淀法制备了不同质量分数CuO修饰的Fe基载氧体且使用固定床制备褐煤焦样,对制得的载氧体进行表征分析,并在小型流化床反应器中进行了褐煤及其煤焦的化学链燃烧实验。结果表明:实验制得的载氧体完成了良好的结晶过程,且经CuO修饰后的载氧体中出现了CuFe2O4;在褐煤化学链燃烧实验中,相比于不经CuO修饰的Fe基载氧体,修饰后的载氧体具有更好的反应活性,具体表现在碳转化率方面,通过对不同质量分数CuO修饰的Fe基载氧体进行实验分析,10%CuO修饰的载氧体褐煤化学链燃烧中碳转化率为94.84%,较不修饰情况下的89.49%提升明显,同时碳转化速率峰值为23.81mol·%·min-1,在相同时间内较不修饰情况提升4.21mol·%·min-1,使用10%CuO修饰的载氧体进行褐煤焦化学链燃烧实验时碳转化率高达95.80%;循环实验中,15次化学链燃烧实验循环后,褐煤化学链燃烧碳转化率为88.69%,对反应后的载氧体表征分析表明,10%CuO修饰的Fe基载氧体仍保持了较为稳定的性能。  相似文献   

2.
化学链燃烧技术是一种可以实现CO2内分离的新型燃烧技术。本文利用基于双级燃料反应器的新型化学链燃烧反应系统,以赤铁矿为载氧体,对污泥的化学链燃烧进行实验研究,系统连续稳定运行8h,考察燃料反应器温度(800~900℃)、污泥进料量(300~600g/h)对污泥化学链燃烧性能的影响。结果表明,稳定运行过程中,床料大部分位于一级燃料反应器,下降管高度保持稳定;双级燃料反应器的设计极大提高了污泥碳转化率,随温度的增加,碳转化率和碳捕集效率逐渐升高,且额外耗氧量始终低于10%;随着污泥进料量增加,碳转化率和CO2体积分数逐渐降低。对两级燃料反应器内载氧体进行XRD分析,结果显示,还原后的载氧体在空气反应器再生后进入二级燃料反应器,和一级燃料反应器相比,具有更多的Fe2O3成分,保证其具有更高的反应活性。  相似文献   

3.
王博  郭庆杰 《化工进展》2018,37(7):2837-2845
以拜耳法赤泥为基体,采用浸渍法制备了CuO修饰的赤泥载氧体(Cu0.5RM1、Cu1RM1)。利用SEM-EDSmapping、XRD对其进行物化表征,并在高温流化床反应器及热重分析仪中考察了赤泥载氧体的废弃活性炭化学链燃烧特性。结果表明,浸渍法可准确制备定量CuO修饰的赤泥载氧体;相比于纯赤泥载氧体,CuO修饰的赤泥载氧体具有化学链燃烧载氧体与化学链氧解耦燃烧载氧体的双重特性,能够加快碳转化速率,有效提高出口气体中CO2浓度;Cu1RM1反应活性较高,875℃为其较优的反应温度,此时t95为28min,出口气体中CO2浓度为92.9%(体积分数),燃烧效率达93.0%。10次循环实验表明Cu1RM1载氧体具有相对稳定的循环反应特性。  相似文献   

4.
胡月  王伟  花秀宁  韩萍 《应用化工》2014,(6):979-981,985
采用溶胶凝胶法制备了负载Al2O3、ZrO2和MgAl2O4的铁基载氧体,其中活性组分含量为70%,惰性载体含量为30%。高温煅烧后的铁基载氧体中活性组分为Fe2O3,相应的惰性载体物相分别为Al2O3、ZrO2和MgAl2O4,活性组分未与惰性负载发生固相反应。采用热重分析仪对铁基载氧体的还原反应活性和循环稳定性进行了测试。结果表明,负载Al2O3的铁基载氧体的还原反应活性最高,且在7周期循环中保持着95%以上的还原转化率和氧化转化率,是理想的载氧体材料。  相似文献   

5.
焦炉煤气(COG)是炼焦过程产生的主要副产品,含有复杂的气体成分(CO、H2、CH4、CO2),化学链燃烧是一种可实现COG高效转化与高纯CO2捕集的技术。通过溶胶凝胶法制备了一系列x(%)CuO/Ce-Zr-O(x=30、50、70、90)载氧体用于COG化学链燃烧反应特性研究。XRD表明,x(%)CuO/Ce-Zr-O载氧体物相由CuO和Ce0.67Zr0.33O2固溶体组成。由于Zr4+进入CeO2晶格中,在617 cm-1处出现明显的氧空位Raman特征峰。H2-TPR、CO-TPR、CH4-TPR和COG-TPR结果表明加入Ce-Zr-O固溶体促使铜物种低温释氧能力增强。800℃下,CuO样品CO2捕集率为34%,添加10%Ce0.67Zr0.33O<...  相似文献   

6.
袁聪  蒲舸  高杰  贾帅辉 《化工学报》2022,73(3):1359-1368
以溶胶凝胶法制备了BaFe2O4载氧体以及Ni、Ce、K修饰的BaFe2O4载氧体,筛选出最佳载氧体为10%(质量)K修饰的BaFe2O4载氧体(10K-BF),探究了不同反应条件对其性能的影响,通过H2-TPR、XRD、SEM、BET对载氧体表征。实验结果表明,Ni、Ce、K的添加均提高了载氧体的合成气产率,10K-BF载氧体在水蒸气与生物质质量比(S/B)等于3,过氧系数α=0.20,反应温度800℃时,气化效果最好,合成气产率1.864 m3/(kg Biomass),氢气产率1.038 m3/(kg Biomass),碳转化率90.49%,积炭率1.33%,10次循环后仍有较高的气体产率及碳转化率。H2-TPR表明10K-BF载氧体在300℃开始释氧,在生物质热解的初始阶段即可参与反应,有利于焦油的裂解;XRD表明10K-BF载氧体再生后可以恢复部分尖晶石结构。  相似文献   

7.
借助ReaxFF-MD方法,对化学链燃烧过程Al2O3负载Fe2O3载氧体(Fe2O3/Al2O3)表面CH4反应过程模拟,探究Al2O3惰性载体对Fe2O3-CH4体系燃烧过程的调控机制。研究发现添加Al2O3惰性载体改变了化学链燃烧过程中Fe2O3载氧体反应性和Fe2O3/Al2O3-CH4反应体系的热力学和动力学行为。主要是促进了Fe2O3载氧体表面CH4氧化,并对CH4反应过程、中间体、产物及其反应速率和放热量等均具有显著促进和调控作用。原因在于Al2O3惰性载体对Fe2O3活性相中晶格氧的活化作用促进了晶格氧的迁移-扩散-释放。添加惰性载体增强了Fe2O3载氧体在化学链燃烧过程晶格氧释放速率和释放量,有利于CH4氧化燃烧向合成气的高效、清洁转化,强化了化学链燃烧过程,满足当前能源高效转化和碳减排目标。  相似文献   

8.
借助ReaxFF-MD方法,对化学链燃烧过程Al2O3负载Fe2O3载氧体(Fe2O3/Al2O3)表面CH4反应过程模拟,探究Al2O3惰性载体对Fe2O3-CH4体系燃烧过程的调控机制。研究发现添加Al2O3惰性载体改变了化学链燃烧过程中Fe2O3载氧体反应性和Fe2O3/Al2O3-CH4反应体系的热力学和动力学行为。主要是促进了Fe2O3载氧体表面CH4氧化,并对CH4反应过程、中间体、产物及其反应速率和放热量等均具有显著促进和调控作用。原因在于Al2O3惰性载体对Fe2O3活性相中晶格氧的活化作用促进了晶格氧的迁移-扩散-释放。添加惰性载体增强了Fe2O3载氧体在化学链燃烧过程晶格氧释放速率和释放量,有利于CH4氧化燃烧向合成气的高效、清洁转化,强化了化学链燃烧过程,满足当前能源高效转化和碳减排目标。  相似文献   

9.
煤的化学链燃烧是清洁煤燃烧的重要技术之一。化学链中载氧体的使用可以避免煤和空气直接接触,从而避免氮氧化物等污染物的产生并提高能量转化效率。一般来说,煤的化学链燃烧有2种反应途径:煤气化化学链燃烧和氧解耦化学链燃烧;不同反应途径将极大影响载氧体组分以及结构设计。详细论述了2015-2020年煤化学链燃烧中固态金属载氧体的研究进展,包括铁基、锰基、铜基、镍基、硫酸钙以及其他复合金属载氧体。总结了不同金属载氧体的优缺点、反应路径、气-固和固-固反应机理、金属与载体的相互作用以及载氧体失活原理。铁基载氧体被广泛应用于气化化学链燃烧中,但单一铁基载氧体的反应速率较低。适量添加碱金属或碱土金属可以提升载氧体的反应活性。锰基载氧体在化学链燃烧中具有两面性:一方面可以在高温缺氧气氛中释放气态氧,另一方面也可以与还原性气体发生气-固反应。通过使用惰性载体以及碱金属添加剂可以提高锰基载氧体的机械强度和氧解耦能力。含铜载氧体具有出色的氧解耦能力和反应活性而被广泛关注,然而铜及其氧化物低熔点所带来的金属聚集导致载氧体的失活问题亟需克服。研究发现使用铁、锰和铜矿石制得的载氧体具有良好的反应性能。硫酸钙载氧体具有较好的反应活性,但煤的化学链燃烧时潜在的二氧化硫和硫化氢副产物需要引起重视。镍基载氧体虽然在煤的化学链燃烧中反应性能较好,但硫毒化、成本较高和环保性能不佳等缺点导致近年来镍基载氧体的研究较少。新型双金属或多金属载氧体可以同时结合2种金属的反应特性,从而显著提高载氧体的整体反应活性。基于载氧体的研究现状,对未来的发展方向提出了4点建议:结合2种煤的化学链燃烧机理设计新型氧解耦辅助化学链燃烧载氧体;发展新型材料和金属组分的载氧体;利用冶金工业废料制得载氧体;开发新型结构的载氧体。  相似文献   

10.
废弃咖啡渣化学链气化反应特性   总被引:4,自引:3,他引:1  
利用溶胶-凝胶法制备了以Fe2O3为活性组分,天然凹凸棒土(ATP)为惰性载体,KNO3修饰的Fe4ATP6K1铁基复合载氧体。在高温流化床中考察了反应温度、水蒸气流量和O/C摩尔比对咖啡渣化学链气化过程的影响。结果表明,与以石英砂为床料的咖啡渣气化相比,以Fe4ATP6K1载氧体为床料的咖啡渣化学链气化对应的碳转化率由71.38%提高到86.25%。咖啡渣化学链气化的较优操作条件为:反应温度900℃、水蒸气量0.23 g·min-1、O/C摩尔比1;在此操作条件下,合成气产量达到1.30 m3·kg-1,氢气产量达到83.79 g·kg-1,氢气的平均浓度达到52.75%。通过X射线衍射(XRD)、扫描电镜-能谱(SEM-EDS)对900℃反应前后的Fe4ATP6K1进行表征,发现Fe相、K相、Si相可以发生相互作用,K以KFeSi3O8的形式存在于载氧体中,并且K在反应过程中有少量流失。20次氧化/还原过程中,铁基复合载氧体Fe4ATP6K1表现出较好的循环性能,碳转化率和冷煤气效率均保持在75%以上,各气体的平均浓度较稳定。  相似文献   

11.
彭松  曾德望  陈超  邱宇  肖睿 《化工学报》2018,69(1):515-522
采用燃烧法合成了具有尖晶石结构的CoFeAlO4载氧体材料,通过表征手段和实验研究考察了不同温度下CoFeAlO4载氧体的化学链燃烧反应特性和循环稳定性,并对CoFeAlO4载氧体晶相结构和表观形貌的变化规律进行了分析。结果表明,温度升高有利于提高CoFeAlO4载氧体转化还原性气体CO的能力,使得还原反应速率更快,但高温下经“还原-氧化”会造成CoFeAlO4载氧体相态分离,难以保持稳定的自载体尖晶石结构。对反应前后CoFeAlO4载氧体晶相结构的分析表明,高温条件下经过“还原-氧化”后生成的CoFe2O4和CoAl2O4是导致CoFeAlO4载氧体烧结和循环稳定性下降的主要原因。  相似文献   

12.
铁基移动床化学链技术进展   总被引:3,自引:3,他引:0       下载免费PDF全文
在日益增长的能源需求与日益严峻的全球气候变化带来的双重压力下,清洁、高效且经济的能源利用方法显得尤为重要。将化学链概念用于传统化石能源的转化是一种前景广阔的新技术。化学链燃烧利用载氧体间接转化含碳燃料,同时实现二氧化碳的捕集。俄亥俄州立大学研发了采用铁基载氧体和移动床反应器的化学链技术,可实现天然气、煤、生物质等多种燃料向电力、氢、液体燃料等产品的零排放转化。目前,合成气化学链(syngas chemical looping,SCL)和煤直接化学链(coal direct chemical looping,CDCL)技术两套25 kWth级小试装置已成功运行总计超过850 h,一套250 kWth级的高压SCL装置即将投入示范运行。  相似文献   

13.
沈天绪  沈来宏 《化工进展》2023,42(1):138-147
化学链燃烧反应器具有广泛的燃料适应性,可同时兼顾气、液、固多类型燃料的运行。本文依托耦合内构件的3kW塔式串行流化床反应器,分别开展异丙醇、污泥以及煤炭的化学链燃烧实验,探究燃料物化属性对化学链燃烧过程与反应器运行的影响,揭示面向目标燃料的反应器针对性设计、载氧体性能选择与流化操作策略,助力形成指向性强、碳捕集效率高与操作灵活的化学链燃烧技术。面对碳化程度低、有机质含量高的固体燃料,焦炭气化速率已非强化重点,如污泥在3kW塔式反应器910℃与150s停留时间内,可实现大于99%的CO2捕集效率,化学链燃烧反应器应侧重改善可燃气体转化与旋风分离器对轻质焦炭颗粒的捕捉。当采用异丙醇等高CH4含量的燃料时,Fe基矿石载氧体的反应性能不足,3kW反应器的额外耗氧率高达10%~19%,其中未燃尽CH4对额外耗氧率的贡献占比超80%。化学链燃烧反应器需依据热解反应气的物化特性,选择或掺混功能性载氧体,以针对性改善气固转化。在煤等高碳化燃料的化学链燃烧过程中,焦炭气化是反应的限制性步骤,简化循环结构的3kW塔式反应器停留时间不足,仅可...  相似文献   

14.
前期研究发现高弥勒指数晶面载氧体Fe2O3[104]具有高的化学链燃烧反应特性,且Co对煤及其热解中间产物具有催化气化和催化转化作用。通过正交实验优化制备Co-Fe2O3[104]/Al2O3载氧体体系结构,开展Co-Fe2O3[104]/Al2O3与褐煤的化学链燃烧,揭示载氧体与褐煤发生化学链燃烧的特性。结果表明:形貌控制制备的高弥勒指数晶面铁基载氧体Co-Fe2O3[104]/Al2O3(质量分数10%)促进了褐煤化学链燃烧过程中氧的迁移速率以及载氧体的还原程度,进而显著提高了载氧体与褐煤化学链燃烧的反应速率及反应效率。进一步通过CO多循环化学链燃烧反应、XRD和TEM表征了Co-Fe2O3[104]/Al2O3(10%)的可再生性及反应稳定性。  相似文献   

15.
化学链技术在煤炭清洁高效利用中的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
史晓斐  杨思宇  钱宇 《化工学报》2018,69(12):4931-4946
化学链技术通过循环物质的反应与再生将特定反应分为几个子反应,以实现资源的定向转化与产物的低耗分离。化学链技术用于煤炭资源的清洁利用可以降低(火用)损、实现CO2低耗捕集、同时抑制NOx产生,在制氧、制氢、发电、化学品生产工艺中有非常大的潜力。本文重点评述和展望了将化学链技术集成应用于IGCC发电以及新型煤化工这两个重要领域。随着研究的进一步深入,化学链技术将有可能成为煤清洁利用中具有特色的创新性技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号