首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
部分亚硝化-厌氧氨氧化联合工艺是一种新型的废水脱氮工艺。实验采用模拟废水,进水氨氮浓度为600 mg/L。亚硝化SBR反应器在温度为30℃、HRT为24 h、DO≈0.2 mg/L的运行条件下,将废水中的一部分氨氮氧化成亚硝氮,并使得亚硝化SBR反应器出水中NH4+-N和NO2--N比值接近1∶1.32后,再作为厌氧氨氧化SBR反应器进水;厌氧氨氧化SBR反应器在温度为37℃、HTR为24 h的运行条件下,将氨氮和亚硝氮转化为N2。实验结果表明,部分亚硝化-厌氧氨氧化联合工艺脱氮效果较好,废水中氮的去除率可达94.44%。  相似文献   

2.
亚硝酸型硝化-厌氧氨氧化工艺运行性能的研究   总被引:1,自引:0,他引:1  
研究评估了生物亚硝酸型硝化反应器与Anammox反应器组成的新型脱氮系统的可行性及该系统的脱氮效率.在两个反应器成功启动的基础上,得出反应器容积负荷率过大时,厌氧氨氧化反应器的去除能力未能同步的得到提高;脱氮系统总的NH4 -N平均去除率达95%以上,系统的容积氨氮去除率为20.1 mg/(L·d),有机物的总去除率稳定在90%左右.  相似文献   

3.
采用一套有效容积为150mL的上向流生物滤池反应器,接种实验室所培养的厌氧氨氧化污泥,在反应器停止运行约1年后,以自配的含NH4+-N和N02-N废水为进水,恢复启动CANON工艺.反应器启动成功后,以二沉池出水为对象,进行脱氮处理研究.试验结果表明,通过控制进水基质溶解氧的方法,经厌氧氨氧化过程转化,成功启动了CANON工艺,共耗时38d,NH4+-N的容积负荷为168g·m-3·d-1,NH4+-N的去除率在90%左右,TN的去除率在70%左右.在二沉池出水NH4+-N质量浓度为25-35mg·L-1,COD为40-60mg·L-1,UV254为0.6-0.9cm-1,HRT为3h,DO质量浓度在0.4 mg·L-1左右的条件下,稳定运行25d,NH4+-N的去除率在95%左右,TN的去除率在65%左右,COD和UV254的平均去除率分别为17%与4%.  相似文献   

4.
考察了低盐度条件下启动厌氧氨氧化反应器及其处理高氮高盐废水的可行性。结果表明,在NaCl为3.0 g/L的低盐度、氮负荷为130 mg/(L·d)的条件下采用普通活性污泥作为接种污泥,可在165 d内成功启动UASB厌氧氨氧化反应器,对TN、NH4+-N、NO2--N的平均去除率分别达到80.0%、98.8%、90.0%,NH4+-N、NO2--N去除量与NO3--N生成量之比为1∶(1.15±0.08)∶(0.20±0.02),出水pH稳定在8.42左右,污泥呈棕褐色颗粒状,存在部分浅红色颗粒污泥。将总氮容积负荷和盐度(NaCl)逐步提高到258 mg/(L·d)和12.0 g/L,反应器脱氮效率保持高效、稳定。在低盐度条件下启动厌氧氨氧化反应器之后,通过适当的氮负荷和盐度提升方式,可以处理高氮高盐废水。  相似文献   

5.
林皓 《水处理技术》2020,46(2):98-103
采用厌氧氨氧化(Anammox)-反硝化偶合反应器处理合成革废水,在人工配水、常温、控制pH在7.5~8.0。结果表明,经过79 d的培养,历经启动初期、活性提高期、负荷提高期等3个启动阶段,系统的TN去除率达70%,成功实现厌氧氨氧化耦合反硝化的启动,系统中厌氧氨氧化和反硝化均发挥一定的TN去除作用,以厌氧氨氧化作用为主。继续运行30 d,反应器状况保持良好,在进水NO2--N与NH4+-N质量浓度的比在1.2~1.5,且COD为60~70 mg/L的条件下,TN去除率可稳定在80%以上,TN容积去除速率约0.29~0.41 kg/(m3·d)。出水水质稳定,处理效果较好。  相似文献   

6.
碳氮比及pH对厌氧氨氧化与反硝化耦合的影响   总被引:1,自引:0,他引:1  
利用上流式厌氧生物滤池反应器(UAF),向已完成厌氧氨氧化和异养反硝化耦合菌富集培养的UAF反应器中连续添加硝酸盐和有机物,研究了pH和不同低m(C)/m(N)对厌氧氨氧化和反硝化反应耦合脱氮活性的影响.结果表明,耦合脱氮反应的最佳pH为7.5,NO3--N、NH4+-N和COD的去除率分别在40%、25%和80%左右;在5个不同低m(C)/m(N)下,以1:2时耦合脱氮效果最佳,NO3--N、NH+-N和COD的去除率分别在35%、20%和60%左右.  相似文献   

7.
为快速实现低C/N比生活污水高效低耗稳定脱氮,在常温条件下,对短程硝化-厌氧氨氧化工艺的启动及脱氮性能进行研究,在常温,高DO(2.5 mg·L-1)条件下,采用实时控制结合神经网络模型预测控制可快速启动短程硝化,亚硝积累率达到95%以上。由于生物膜的独特结构可为厌氧氨氧化(Anammox)菌提供良好的厌氧环境,因此选用生物滤池来实现厌氧氨氧化,启动期间克服了温度变化的影响,第173天后,NH4+-N和NO2--N去除率达到90%以上,TN去除率达到80%,Anammox滤池成功启动。后续将短程硝化与厌氧氨氧化耦合,通过逐步提高滤速启动耦合系统,Anammox滤池滤速可提高到0.5 m·h-1,总氮容积负荷达到0.75 kg·m-3·d-1。系统出水TN平均浓度为8 mg·L-1,实现了短程硝化耦合厌氧氨氧化工艺稳定高效地处理生活污水。  相似文献   

8.
采用好氧+厌氧组合人工快渗(OCRI+ACRI)工艺处理印染二级生化出水,考察了运行过程中氮素污染物的迁移转化规律及脱氮效果。结果表明,组合工艺运行28 d后可成功启动部分亚硝化和厌氧氨氧化,稳定运行期间COD、NH4+-N、TN平均去除率分别为87.2%、99.0%、96.9%,出水浓度均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)的直接排放标准。组合CRI工艺共运行180 d,OCRI反应器内主要发生部分亚硝化,其对COD、NH4+-N、TN的去除率分别为87.3%、60.1%、5.2%。ACRI反应器内主要发生厌氧氨氧化,其对COD、NH4+-N、TN的去除率分别为12.7%、39.9%、94.8%。  相似文献   

9.
ANAMMOX反应器快速启动及对反硝化聚磷的影响研究   总被引:1,自引:0,他引:1  
硝化菌的生长快于厌氧氨氧化菌,通过培育硝化生物膜,利用硝化菌的基质多样性和代谢多样性,可使生物膜由催化硝化反应过渡到催化厌氧氨氧化反应,加速ANAMMOX反应器的启动。经过2个月的运行,成功地启动了ANAMMOX反应器,而且反应器运行性能稳定。将厌氧氨氧化引入反硝化聚磷系统中,试验结果表明,在COD和TP的去除率保持基本不变的情况下,NH4+-N的去除率从23%上升到87%,TN的去除率从88%提高到93%,出水NH4+-N和NO2--N的质量浓度均低于2mg/L。  相似文献   

10.
运行微气泡曝气生物流化床反应器(MAFBR),研究了不同运行策略下同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程实现及生物脱氮性能。结果表明,MAFBR反应器采用高碳氮比(C/N)启动并逐渐降低C/N的运行策略时,生物脱氮过程为同步硝化-反硝化,硝化过程效率较低且为生物脱氮的限制因素,生物脱氮性能不理想。MAFBR反应器采用低C/N启动并控制适宜溶解氧(DO)浓度的运行策略时,生物脱氮过程由同步硝化-反硝化逐渐转变为SNAD过程,从而实现高效生物脱氮性能。MAFBR反应器可在C/N为1、DO平均质量浓度为1.29 mg/L条件下实现SNAD过程,其氨氮平均去除率和平均去除负荷可达到69.87%和0.31 kg/(m~3·d),总氮(TN)平均去除率和平均去除负荷可达到63.93%和0.29 kg/(m~3·d),厌氧氨氧化对TN去除的平均贡献率可达到52.89%以上。  相似文献   

11.
不同含量低污染水对人工湿地中细菌的影响研究   总被引:1,自引:0,他引:1  
探究水平流人工湿地(HFCW)系统处理低污染水过程中,相同COD/ρ(TN)下不同碳氮含量对细菌群落结构的影响。结果表明,进水为较高碳氮含量的HFCW(HF1)和进水为较低碳氮含量的HFCW(HF2)对COD和TN的去除效率具有一定的差异,HF1和HF2对COD的去除效率分别为48.26%和28.89%,对TN的去除率分别为79.06%和81.87%。HF1中细菌的丰富度和多样性均高于HF2,HF1中富集的优势细菌为Chloroflexaceae、Comamonadaceae和Rhodocyclaceae,均具有异养反硝化功能,HF2中富集的优势细菌为Xanthomonadaceae和Rhodocyclaceae,其中Xanthomonadaceae具有自养反硝化功能。COD、NH4^+-N和NO3^--N对HF1中细菌群落的影响大于对HF2中细菌群落的影响,HF1中COD对细菌群落的影响大于NH4^+-N和NO3^--N。  相似文献   

12.
试验采用同时好氧缺氧反应器处理垃圾压缩站废水。试验结果表明。反应器对垃圾压缩站废水的CODcrNNH^+4-N和TN具有较好的处理效果。试验过程中,CODDcr NH^+4-N和TN的平均去除率分别为71.30%,87.50%和67.76%。电子计量学研究表明。同时好氧缺氧生物反应器内存在比传统短程反硝化反应消耗碳源更少的脱氮反应形式。微环境和宏观环境理论表明。反应器具备厌氧氨氧化反应发生的条件。  相似文献   

13.
为了提高生物脱氮的效率,研究采用序批式活性污泥法(SBR工艺)考察碳氮质量比w(C/N)与氨氮负荷对同步硝化反硝化的影响。结果表明:当w(C/N)为5.6,氨氮负荷为0.024 g/(g.d),碳源快速消耗,SBR工艺较难实现同步硝化反硝化,同步硝化反硝化率只能够达到0.76%。当w(C/N)为10.5,氨氮负荷为0.024 g/(g.d)时,SBR系统能够实现同步硝化反硝化,同步硝化反硝化率达到97.6%,NH4+-N和COD去除率均接近100%;当w(C/N)为16.3,氨氮负荷为0.024 g/(g.d)时,同步硝化反硝化率为94.5%,增加外加碳源的成本。同步硝化反硝化可以取代二段独立的硝化和反硝化过程,节省运行费用。  相似文献   

14.
探讨了常温下在固定床生物膜反应器中接种普通活性污泥、用人工模拟废水启动OLAND工艺的方法。实验温度控制在23~26℃,水力停留时间为2 d,初始进水NH_4~+-N为50 mg/L。结果表明,31 d首次出现总氮去除;第45天进水NH_4~+-N提升至60 mg/L,总氮和NH_4~+-N去除率分别达到89.54%、95.45%。第65天进水NH_4~+-N达到100mg/L,总氮和NH_4~+-N去除率分别为77.64%、87.17%,总氮去除速率达到最大值38.82 g/(m3·d),标志着OLAND工艺成功启动。该技术可满足城市生活污水的除氮需求。  相似文献   

15.
随着国家对环境保护的重视,炼化行业废水排放标准也在逐步升级,《石油炼制工业污染物排放标准》(GB 31570-2015)首次对石化行业总氮排放限值提出了要求,并于2017年7月1日起正式实施。对于炼油催化剂废水,由于其低C/N比,低成本总氮(TN)脱除是其难题。本文以催化剂生产废水为研究对象,结合该废水高含盐、低C/N比的特点,在SBR反应器内采用实时控制的方式,采用短程硝化反硝化脱氮技术对模拟催化剂废水进行实验研究。实验结果表明:在实时控制条件下,低C/N比的含盐催化剂废水稳定运行时NH4+-N和TNN(TNN为亚硝酸盐和硝酸盐之和)去除率分别达到96.9%和99.8%,硝化出水亚硝酸盐积累率NAR平均为98.1%,同时反硝化阶段对碳源需求:醋酸钠(Na Ac)/TNN为3.1∶1,节省了大量碳源。  相似文献   

16.
通过对短程硝化反硝化工艺的研究,开发了好氧/厌氧/好氧/缺氧(O1/A1/O2/A2)生物脱氮新工艺并用于焦化废水的处理。考察了NH4+-N、COD、TN对反应器运行效果影响。结果表明,当进水COD平均为3 012.9 mg/L,NH4+-N、TN、挥发酚、总氰平均质量浓度分别为590.5、608.4、361.8、34.5 mg/L;出水COD平均为81.7 mg/L,出水NH4+-N、TN、挥发酚、总氰的平均质量浓度分别为0.1、9.9、0.1、0.1 mg/L,出水指标达到国家污水综合排放一级标准,A/O工艺处理这种焦化废水TN偏高,而用O1/A1/O2/A2工艺可以解决这一问题,实现了TN脱除。考察了温度、DO、pH对短程硝化影响。结果表明,在DO质量浓度为1.0~1.5 mg/L、温度在30~35℃、pH 7.5~8.0,系统能够进行稳定短程硝化反硝化。  相似文献   

17.
废水脱氮中好氧反硝化现象的研究   总被引:4,自引:0,他引:4  
采用SBR工艺,对废水脱氮中的好氧反硝化现象进行了研究。试验工序为:缺氧搅拌3h、曝气8h、缺氧搅拌1.5h、沉淀1h、排水。当进水ρ(NH4+-N)为107mg/L,ρ(CODCr)为700mg/L时,好氧段NH4+-N的去除率达到53.3%,TN的去除占整个周期TN去除的71.23%,表明好氧反硝化现象对整个周期的脱氮起着主要的作用。  相似文献   

18.
The sequencing batch reactor (SBR) was started up by seeding the anaerobic granular sludge and the aerobic granular sludge was successfully cultivated. The performance characteristic of the aerobic granules for nitrogen removal was investigated in detail. The experimental results demonstrated the relationship between operational parameters [dissolved oxygen (DO) and pH] and variation of chemical oxygen demand (COD), ammonium (NH4^+-N) and total nitrogen (TN). In continuous flow pattern, COD was too low in the reactor at the later stage of a cycle, which restrained denitrification and decreased the removal of nitrogen, while in discontinuous flow pattern, the carbon source could be supplemented in time, which improved denitrification and increased the removal of TN from 66% to 81%.  相似文献   

19.
含盐废水硝化过程常常出现亚硝酸盐积累,从而导致强温室气体N2O的产生。利用序批式生物膜反应器(SBBR),考察了含盐生活污水同步脱氮过程不同菌群活性变化及N2O释放过程。结果表明,盐度增加,各菌群活性受抑制程度依次为亚硝酸盐氧化菌(Nitrite Oxidizing Bacteria, NOB)?氨氧化菌(Ammonia Oxidizing Bacteria, AOB)?碳氧化菌。实验盐度范围内(0~20 g NaCl/L),COD出水约稳定在50.0 mg/L,平均NH4+去除率由98%以上降至约70.5%,TN去除率由42.4%降至16.9%,N2O平均产率由3.9%增至13.3%。与SND变化类似,微生物体内聚-β-羟基脂肪酸酯(PHA)和糖原(Gly)积累随盐度增加呈先增加后减少趋势。N2O主要产生于AOB好氧反硝化过程和硝化后期内源反硝化过程。低盐度(≤10 g NaCl/L)下,SBBR内缺氧区有助于减少N2O释放;盐度增加,高盐度耦合低内碳源合成,加剧了内源反硝化阶段各还原酶之间电子竞争。高盐度导致微生物胞外聚合物(EPS)分泌增加,多聚糖(PS)比例上升,膜内缺氧区域减少,抑制N2O还原过程。  相似文献   

20.
试验用水为典型的晚期城市生活垃圾渗滤液。第一阶段试验采用“两级UASB+A/O”系统,在一级UASB中进行回流处理水反硝化,二级UASB进行产甲烷反应,A/O反应器进行NH4+-N硝化反应。第一阶段研究表明可生化有机物在一级UASB几乎全部降解,所以第二阶段试验取消第二级UASB形成“一级UASB+A/O”系统。系统的有机物去除率=50~70%,系统出水COD=1000~1500 mg•L-1。当运行温度为17~29℃时,实现了稳定的NO2--N累积率为90~99%的短程硝化。试验期间 NH4+-N负荷(ALR)=0.28~0.60 kgNH4+-N•m-3•d-1,NH4+-N硝化率=90~100%。当ALR <0.45 kgNH4+-N•m-3•d-1,硝化率>98%,出水NH4+-N<15mg•L-1。在进水COD/NH4+-N=2~3时,无机氮TIN去除率=70~80%。采用荧光原位杂交技术(FISH)对活性污泥进行检测,结果表明,A/O工艺活性污泥中的NH4+-N氧化菌(AOB)为细菌总数的4%左右,NO2--N 氧化菌(NOB)数量不足细菌总量的0.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号