首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Heat/mass transfer by air flow over a sample stack of planks is studied numerically. For the simulations, the low Re k-epsilon turbulence model and bounded QUICK scheme are used. The calculated Nusselt numbers are in good agreement with the experimental data

The results of our study show that the low Re turbulence models have advantages over the conventional high Re models for this type of industrial application. This is mainly due to the small height of separation bubbles resulting from the selected large blockage ratios (more than 50 percent) occurring in such flows

Numerical simulations were carried out to study the effect of the vertical air gap due to shrinkage and non uniform sawing as well as the non uniformity in the height of boards on the flow field and heat/mass transfer characteristics. The results show that the selected gap size significantly affects the local and average Nu numbers across the stack. We have suggested optimum gap sizes for maximum heat/mass for different flow velocities (Re numbers).  相似文献   

2.
A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient in-creases by (10-20)% and the pressure drop decreases by (15-55)%.  相似文献   

3.
ABSTRACT

Heat/mass transfer by air flow over a sample stack of planks is studied numerically. For the simulations, the low Re k-epsilon turbulence model and bounded QUICK scheme are used. The calculated Nusselt numbers are in good agreement with the experimental data

The results of our study show that the low Re turbulence models have advantages over the conventional high Re models for this type of industrial application. This is mainly due to the small height of separation bubbles resulting from the selected large blockage ratios (more than 50 percent) occurring in such flows

Numerical simulations were carried out to study the effect of the vertical air gap due to shrinkage and non uniform sawing as well as the non uniformity in the height of boards on the flow field and heat/mass transfer characteristics. The results show that the selected gap size significantly affects the local and average Nu numbers across the stack. We have suggested optimum gap sizes for maximum heat/mass for different flow velocities (Re numbers).  相似文献   

4.
复合板网填料性能研究   总被引:1,自引:0,他引:1  
对一种新型的金属复合板网填料进行了研究,它是由三层板网贴合为复合基材后加工成波纹填料。在500冷模实验塔内对250Y型填料的测试结果表明复合板网填料具有显著的性能优势。三层复合板网填料的压降比常用的金属板波纹填料低60%以上,通量大20%~40%。氧解吸实验结果表明三层复合板网填料的分离效率明显高于单层板网填料,尤其在液气比低的工况下,效率可以倍增,和广泛应用的金属Mellapac填料相比,复合板网填料的分离效率能高30%左右。  相似文献   

5.
在液-液萃取过程中,提高分散相的表面更新速率可有效提高萃取的传质效率.研究发现,在萃取过程中使用气体搅拌可以增加液液之间的接触面积,促进液相内的湍动和循环.据此,本文在气-液-液萃取条件下对不同填料的传质性能进行了测定.实验表明,通入气相后分散相液滴呈现稳定的“油包气”空心状态,这种结构大大降低了分散相液滴的传质层厚度,减小了传质距离,极大地强化传质效率.在适宜气速下,气-液-液萃取效率较传统萃取效率提高20%~40%.通过与散装填料对比,发现规整填料更利于强化萃取效果,传质效率提高约50%.  相似文献   

6.
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of β (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of β, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration‐renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
李洪  姚跃宾  王方舟  高鑫  李鑫钢 《化工学报》2014,65(12):4760-4766
根据液相在波纹规整填料片上呈现渗流、膜状流等不同的流动方式,选择5种不同的波纹规整填料对其流体力学和传质性能进行研究,以探究液相在波纹片上的流动方式对波纹规整填料性能的影响.研究结果表明,液相呈渗流流动的泡沫碳化硅波纹规整填料(SCFP型)有利于液体横向扩散和液膜均匀分布,当液相喷淋密度和气相F因子均较小时,其压降最低,传质效率最高;液相主要呈渗流流动、兼有膜状流动的双层错孔丝网填料(DMⅢ型)有利于波纹片两侧液体交换,强化液体在流动过程中的扰动,其压降及传质性能略逊于SCFP型填料;液相主要呈膜状流动的BX型、DMⅠ型及DMⅡ型填料波纹片表面液膜较厚,横向扩散能力差,其传质效率低于SCFP型和DMⅢ型填料.研究揭示了依靠渗流作用的波纹规整填料具有较好的应用性能,为波纹规整填料的进一步发展开拓了新思路.  相似文献   

8.
Physical 3D models were established for corrugated packing used in the enrichment of the isotope 13C. Computational fluid dynamics (CFD) simulation results indicated that common corrugated packing was not well wetted when used for isotope distillation. It is concluded that liquid misdistribution in the packed tower results from the structure of the packing rather than from the height of the packing beds. The existence of entrainment was also demonstrated by CFD simulation. It is proved that mass transfer equations based on the Nusselt theory are not suitable for distillation calculation in such a corrugated packing system. By comparison, the recently developed structured packing model with a corrugation geometry based on the right‐angled triangle, known as Zigzag‐pak, describes vapor‐liquid distribution properties well and has significant advantages over common corrugated packing due to its better liquid distribution character.  相似文献   

9.
An experimental investigation was carried out to examine the fluid dynamic and mass transfer behavior of structured packing, with the liquid and gas phase flowing co‐currently downwards in the column. Liquid to packing mass transfer coefficients for three positions within the pack were measured by an electrochemical method, varying both the liquid and gas loads as well as the physical properties of the liquid phase. Due to the high void fraction of structured packing, much higher liquid flow rates can be used than in traditional particle trickle‐beds. It was found that in the range studied, the gas superficial velocity has no effect on the mass transfer rate and thus, a general mass transfer correlation in terms of liquid Reynolds number only, was developed. Wetted areas and the radial distribution of liquid through the packing element were determined by a colorimetric method. Within the range of liquid flow rates investigated, complete wetting is not achieved, even with the low viscosity solutions. The measured ratios of hydraulic to geometric area, agree reasonably well with values predicted by existing relationships.  相似文献   

10.
通过研究系统中填料蒸发器的蒸发传质传热过程以及两相流动特性,采用计算流体力学(computational fluid dynamics,CFD)中离散相与连续相耦合的方法来模拟规整填料内部通道的蒸发传质传热过程,实现了填料蒸发器中两相传质传热的过程以及液滴流动的可视化,为研究气液两相在规整填料内的流动提供了一种模拟方法。通过与实验结果的比较,最终选用RNG k-ε湍流模型来分析规整填料内部气液两相传质传热以及流动情况。数值模拟研究了规整填料板间距对填料内部气液两相传质传热以及液滴运动影响,发现随着板间距的增大,填料内部压力降逐渐降低,出口空气中水蒸气的含量不断减小,液滴蒸发速率降低,液滴进出口质量差减小,气相出口温度逐渐降低,蒸发传质传热效率降低。随着气速的增大,出口空气中水蒸气的含量不断减小,液滴蒸发速率增加,气相出口温度降低,气液两相传质传热效率降低。  相似文献   

11.
Randomly packed bed reactors are widely used in chemical process industries, because of their low cost and ease of use compared to other packing methods. However, the pressure drops in such packed beds are usually much higher than those in other packed beds, and the overall heat transfer performances may be greatly lowered. In order to reduce the pressure drops and improve the overall heat transfer performances of packed beds, structured packed beds are considered to be promising choices. In this paper, the flow and heat transfer inside small pores of some novel structured packed beds are numerically studied, where the packed beds with ellipsoidal or non-uniform spherical particles are investigated for the first time and some new transport phenomena are obtained. Three-dimensional Navier–Stokes equations and RNG k–ε turbulence model with scalable wall function are adopted for present computations. The effects of packing form and particle shape are studied in detail and the flow and heat transfer performances in uniform and non-uniform packed beds are also compared with each other. Firstly, it is found that, with proper selection of packing form and particle shape, the pressure drops in structured packed beds can be greatly reduced and the overall heat transfer performances will be improved. The traditional correlations of flow and heat transfer extracted from randomly packings are found to overpredict the pressure drops and Nusselt number for all these structured packings, and new correlations of flow and heat transfer are obtained. Secondly, it is also revealed that, both the effects of packing form and particle shape are significant on the flow and heat transfer in structured packed beds. With the same particle shape (sphere), the overall heat transfer efficiency of simple cubic (SC) packing is the highest. With the same packing form, such as face center cubic (FCC) packing, the overall heat transfer performance of long ellipsoidal particle model is the best. Furthermore, with the same particle shape and packing form, such as body center cubic (BCC) packing with spheres, the overall heat transfer performance of uniform packing model is higher than that of non-uniform packing model. The models and results presented in this paper would be useful for the optimum design of packed bed reactors.  相似文献   

12.
主要研究了不同比表面积和开孔率塑料规整填料表面处理前后的流体力学和传质性能。结果表明:经过表面改性后,传质性能可提高约20%~35%,开孔填料经表面改性后阻力不会增加,并且在低喷淋密度时传质效率提高显著。  相似文献   

13.
在液-液萃取过程中,提高分散相的表面更新速率可有效提高萃取的传质效率。研究发现,在萃取过程中使用气体搅拌可以增加液液之间的接触面积,促进液相内的湍动和循环。本文研究了气-液-液三相下油滴的流动形态,并对不同填料的流体力学性能进行了测定。实验结果表明,气相速度的增加可导致气含率、液含率的增加,从而提高分散相在填料萃取塔中的停留时间,在一定的速度范围内明显降低萃取的表观传质单元高度,极大地强化传质效果。通过与散装填料对比,发现规整填料更利于强化萃取效果,其液泛速度平均增加25%。  相似文献   

14.
A mathematical model is developed and tested for drum drying of an aqueous slurry subjected to impinging jets of superheated steam. The heat and mass transfer within the slurry film was modeled as a one dimensional, pseudo unsteady diffusion problem while the external convective heat transfer rate was obtained by solving the steady full conservation equations of mass, momentum and energy numerically in two and three dimensions. A modified low Reynolds number version of the k-? turbulence model was selected after a careful evaluation of the predictive performance of various k-? models for impingement flow and heat transfer. The computed heat transfer one-dimensional diffusion model for the slurry film. Agreement between experimental data obtained using a black liquor slurry and results of the model was found to be satisfactory.  相似文献   

15.
《分离科学与技术》2012,47(7-9):1139-1155
Abstract

Extractors equipped with structured packing are becoming more important in the chemical process industries. These devices provide high mass transfer efficiency and capacity relative to random packings and sieve trays. At the present time, many sieve tray extractors are being retrofitted with structured packings to enhance mass transfer efficiency and capacity. This paper will present a comparison of the performance of structured packing with sieve trays, some background on the commercial development of structured packings, and fundamental models required to design a liquid/liquid extractor equipped with structured packing.  相似文献   

16.
新型垂直板规整填料流体力学及传质性能   总被引:3,自引:1,他引:2       下载免费PDF全文
采用氧解吸实验,在直径190 mm的有机玻璃塔内,液相喷淋密度10~38 m3·m-2·h-1,F因子0.2~3.2 m·s-1·(kg·m-30.5的实验条件下测定了一种新型垂直板规整填料的流体力学及传质性能。实验结果表明:垂直板填料的操作压降及传质性能均显著优于商业波纹填料。通过与几种经改进的250型波纹填料相比发现,两者泛点F因子整体上相当;在较高液体喷淋密度下,垂直板填料传质性能及压降均高于改进250型波纹填料;在低喷淋密度下,垂直板填料可实现压降低于改进250型波纹填料,而两者传质性能相当。此外,对填料结构改进对其性能的影响进行了单因素考察。  相似文献   

17.
A computational fluid dynamics (CFD) model for the simulation of immobilized photocatalytic reactors used for water treatment was developed and evaluated experimentally. The model integrated hydrodynamics, species mass transport, chemical reaction kinetics, and irradiance distribution within the reactor. The experimental evaluation was performed using various configurations of annular reactors and ultraviolet lamp sizes over a wide range of hydrodynamic conditions (350 < Re < 11,000). The evaluation showed that the developed CFD model was able to successfully predict the photocatalytic degradation rate of a model pollutant in the analyzed reactors. In terms of hydrodynamic models, the results demonstrated that the laminar model performs well for systems under laminar flow conditions, whereas the Abe‐Kondoh‐Nagano low Reynolds number and the Reynolds stress turbulence models give accurate predictions for photoreactors under transitional or turbulent flow regimes. The performed analysis confirmed that degradation rates of organic contaminants in immobilized photocatalytic reactors are strongly limited by external mass transfer; as a consequence, the degradation prediction capability of the CFD model is largely determined by the external mass transfer prediction performance of the hydrodynamic models used. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

18.
A gas‐liquid Eulerian porous media computational fluid dynamics (CFD) model was developed for an absorber with structured packing to remove CO2 from natural gas by mono‐ethanol‐amine (MEA). The three‐dimensional geometry of the amine absorber with Mellapak 500.X was constructed to investigate the effect of the tilting and motion experienced on ships and barges for offshore plants. The momentum equation included porous resistance, gas‐liquid momentum exchange, and liquid dispersion to replace structured‐packing by porous media. The mass equation involved mass transfer of CO2 gas into MEA solution, and one chemical reaction. Parameters of the CFD model were adjusted to fit experimental data measured in the CO2‐MEA system. As the tilting angle increased, the liquid holdup and effective interfacial area decreased and CO2 removal efficiency was lowered. The uniformity of liquid holdup deteriorated by 10% for a 3° static tilting, and a rolling motion with 4.5° amplitude and 12 s period, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4412–4425, 2015  相似文献   

19.
20.
An experimental and numerical simulation study of heat transfer due to a confined impinging circular jet is presented. In this research, a stainless steel foil heated disk was used as the heat transfer surface of a simulated chip, and the thermocouples were mounted symmetrically along the diameter of the foil to measure the temperature distribution on the surface. Driven by a small pump, a circular air jet (1.5 mm and 1 mm in diameter) impinged on the heat‐transfer surface with middle and low Reynolds numbers. The parameters, such as Reynolds number and ratio of height‐to‐diameter, were changed to investigate the radial distribution of the Nusselt number and the characteristics of heat transfer in the stagnation region. Numerical computations were performed by using several different turbulence models. In wall bounded turbulent flows, near‐wall modeling is crucial. Therefore, the turbulence models enhanced wall treatment, such as the RNG κ‐? model, may be superior for modeling impingement flows. The numerical results showed reasonable agreement with the experimental data for local heat transfer coefficient distributions. The impinging jet may be an effective method to solve the cooling problem of high power density electronic packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号