首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
尼龙1212/SEBS-g-MA/DIDP/BSBA共混体系的制备与力学性能研究   总被引:4,自引:3,他引:4  
选择SEBS-g-MA和两种不同的小分子增塑剂DIDP、BSBA,采用共混挤出的方法,制备了尼龙1212(PA1212)/SEBS—g—MA/DIDP/BSBA共混合金,并对其力学性能进行了研究。结果表明,随着SEBS-g-MA质量分数的增加,共混合金的冲击强度明显提高。当SEBS-g-MA质量分数为10%时,其缺口冲击强度为89.3kJ/m^2,是PA1212的20倍左右;拉伸强度保持率是PA1212的90%左右。  相似文献   

2.
PA66的增韧增强研究   总被引:3,自引:0,他引:3  
研究了玻璃纤维和弹性体(EPDM—g—MAH),对尼龙66(PA66)的增韧、增强的效果。结果表明,玻璃纤维对PA66有很好的增强效果,当玻璃纤维质量分数达30%时,共混体系的拉伸强度达到112.13MPa;玻璃纤维对PA66也有一定的增韧作用,当玻璃纤维质量分数为18%时,增韧效果最好。EPDM—g—MAH对PA66有很好的增韧作用,当EPDM—g—MAH填充量增加到10%时,共混体系的冲击强度提高到28.3kJ/m^2;但体系的拉伸强度有所下降。  相似文献   

3.
EPDM增韧PET的研究   总被引:6,自引:0,他引:6  
在引发剂过氧化二异丙苯(DCP)的作用下,通过添加少量界面增容剂苯乙烯(St)提高接枝率,使甲基丙烯酸缩水甘油酯(GMA)与(乙烯/丙烯/二烯)共聚物(EPDM)反应,得到接枝物EPDM—g—GMA,将EPDM—g—GMA与PET共混,以提高共混体系的冲击强度。探讨了不同含量的EPDM—g—GMA对共混体系力学性能的影响。结果表明,随着EPDM—g—GMA含量的增加,共混体系的缺口冲击强度显著提高,当其含量为50%时,材料的缺口冲击强度为344.9J/m,约为纯PET的12倍;拉伸强度、弯曲强度和弯曲弹性模量出现一定程度的下降;EPDM—g—GMA含量为20%~30%时.材料的综合力学性能较好。  相似文献   

4.
采用核-壳聚合物/FIBS为增韧剂和环氧乙烷(Epoxy)为相容剂,采用共混挤出的方法,制备了尼龙1212/MBS/Epoxy共混合金,测定了力学性能。结果表明,核-壳聚合物MBS加入的质量分数为20%NEpoxy的质量分数为3%时,共混体系的拉伸强度和冲击强度都同时提高并到达最大值,其拉伸强度和冲击强度分别是64.2MPa和25.6kJ/m^2,分别是纯尼龙1212的1.33倍和6.1倍,即韧性提高了5.1倍且拉伸强度也有所提高。用SEN对共混物的表面特性进行了研究。  相似文献   

5.
将尼龙(PA)1010盐和PA66盐按照质量比为9∶1的比例制备了PA1010/66共聚物。选择(苯乙烯/乙烯-丁烯/苯乙烯)共聚物接枝马来酸酐(SEBS-g-MAH)和两种小分子增塑剂邻苯二甲酸二异癸酯、N-丁基苯磺酰胺(D IDP、BSBA),采用共混挤出法制备了(PA1010/66)/SEBS-g-MAH/D IDP/BSBA共混物,并对其力学性能进行了研究。结果表明,随着SEBS-g-MAH含量的增加,共混物的冲击强度明显提高。当SEBS-g-MAH质量分数为15%时,其缺口冲击强度为72.7 kJ/m2,是PA1010/66共聚物的16倍左右;拉伸强度保持率是PA1010/66共聚物的83%左右。通过SEM研究发现,SEBS-g-MAH对PA1010/66共聚物的增韧机理为银纹剪切带增韧机理。  相似文献   

6.
制备了尼龙(PA)1212/EPDM-g-MAH共混物,并对其力学性能、热性能及共混形态进行了研究,结果表明,增韧剂的加入使共混物的缺口冲击强度显著增大,当增韧剂含量为20%时,缺口冲击强度为74.98kJ/m^3,是纯PA1212的13.5倍;用二甲苯处理过的共混物试样断面很不平坦,有很多孔洞和类纤维体,说明弹性体粒子以球状分散于基体树脂中。  相似文献   

7.
尼龙1212/EPDM-g-MAH共混体系的性能研究   总被引:4,自引:4,他引:0  
利用示差扫描量热法、动态粘弹谱仪研究了尼龙1212/EPDM—g—MAH共混体系的热行为和动态力学性能。结果表明.增韧剂的加入使尼龙1212更容易结晶,结晶速度增大,结晶温度提高,熔融热焓降低;尼龙1212和增韧剂具有较好的相容性。  相似文献   

8.
PFPA1212/SEBS-g-MAH共混合金力学性能和微观结构的研究   总被引:5,自引:0,他引:5  
制备了石油发酵尼龙1212/SEBS-g-MAH共混合,工对其力学性能和微观结构进行了研究。结果表明,随着增韧剂含量的增加,共混合金的制品冲击强度显著提高,当增韧剂含量为25%时,缺口冲击强度为61.26kJ/m^2,是纯尼龙1212的15倍,拉伸强度保持率是纯尼龙1212的90%。微观结构研究表明,尼龙1212的断裂属于韧性断裂,增韧后的尼龙1212制品冲击断面有明显的应力发白现象,冲击强度提高的主要原因在于应力集中点的增多。  相似文献   

9.
用三元乙丙胶(EPDM)和三元乙丙胶接枝马来酸酐(MA)的共聚物(EPDM-g-MA)作为增韧增容材料,研究了PA66与EPDM-g-MA组成的二元共混体系(PA66/EPDM-g-MA)及PA66、EPDM和FPDM-g-MA组成的三元共混体系(PA66/EPDM/EPDM-g-MA)的各种力学性能。结果表明:随着EPDM-g-MA含量的增加,PA66/EPDM-g-MA二元共混体系的耐冲击性能明显提高,当EPDM-g-MA含量为20%(质量)时、Izod缺口冲击强度为纯PA66的7倍,但拉伸强度、模量等随之下降;对于PA66/EPDM/EPDM-g-MA三元共混体系,其力学性能介于PA66/EPDM和PA66/EPDM-g-MA两种二元共混体系之间。此外,本文还对EPDM与MA接枝物及EPDM与马来酸二丁酯(DBM)接枝物的制备作了初步探讨。  相似文献   

10.
采用显微熔点法测定了尼龙6/尼龙66/尼龙1212共聚物的表观相图,显示了共聚尼龙组分配比对其熔点的决定性作用,并给出共聚尼龙6/66/1212熔点与其各尼龙盐组分配比之间的定量关系。  相似文献   

11.
尼龙1212/SEBS-g-MA/DIDP/BSBA共混体系热行为的研究   总被引:1,自引:0,他引:1  
利用差示扫描量热(DSC)、热失重(TG)和微分热失重(DTG),研究了尼龙1212/SEBS-g-MA/DIDP/BSBA共混体系共混物的热行为和降解过程。实验结果表明,共混体系均为单一的熔融行为,加入的SEBS-g-MA使熔点和熔融热下降;热降解为二步降解过程。  相似文献   

12.
BACKGROUND: Polyamides, or nylons, are an attractive class of engineering polymers due to their excellent strength and stiffness, low friction and chemical and wear resistance. However, they are highly notch‐sensitive, i.e. they are often ductile in the un‐notched state, but fail in a brittle manner when notched. A super‐tough nylon 1212 was prepared by blending nylon 1212 with ethylene propylene diene monomer (EPDM) grafted with maleic anhydride (MA). The morphologies of Izod impact fracture surfaces as well as xylene‐etched surfaces of the nylon were thoroughly investigated using scanning electron microscopy (SEM). RESULTS: The fracture morphology and the impact strength of the nylon 1212 blends are very well correlated. The impact fracture surface of the blends exhibits certain characteristic features, such as the observation of fiber‐like sticks when etched with boiling xylene, formed during the impact fracture process. SEM images of xylene‐etched surfaces as well as the results of X‐ray energy dispersive spectroscopy suggest that the successful toughening of nylon 1212 with EPDM‐graft‐MA is due to the reaction between the anhydride of EPDM‐graft‐MA and the amine end‐groups of nylon 1212, leading to the formation of a homogenous graft copolymer system. CONCLUSION: The copolymer system, acting as a surfactant, reduces the interfacial tension between nylon 1212 and EPDM‐graft‐MA and produces a highly compatible super‐tough nylon 1212. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
用差示扫描量热仪对尼龙6/1212(PA6/1212)共聚物的一次、二次熔融行为及结晶行为进行了研究,分析了组成与熔融峰、结晶峰的关系,发现了冷结晶现象;研究了PA1212单体含量为2%~20%的PA6/1212共聚物的力学性能与组成的关系。结果表明,在此组成范围内可制得刚性优良的共聚物,冲击强度也有所改善,当PA1212单体含量为11%时,可得到综合力学性能相对较好的共聚物。  相似文献   

14.
尼龙66/1010/1212热熔胶的研制   总被引:1,自引:0,他引:1  
采用尼龙66/1010/1212共聚工艺,从配方上改进了单体残留问题,同时,根据单体含量-熔点曲线,探索了尼龙66/1010/1212的熔点与配比关系的实验方法。  相似文献   

15.
In this study, styrene‐b‐ethylene/butylene‐b‐styrene triblock copolymer (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were used as compatibilizers for the blends of polyphenylene sulfide/nylon 66 (PPS/PA66). The mechanical properties, including impact and tensile properties and morphology of the blends, were investigated by mechanical properties measurements and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with elastomer (SEBS and SEBS‐g‐MA) content upto 20 wt %; thereafter, it increases sharply with increasing elastomer content. The impact energy of the elastomer‐compatibilized PPS/PA66 blends exceeded that of pure nylon 66, implying that the nylon 66 can be further toughened by the incorporation of brittle PPS minor phase in the presence of SEBS or SEBS‐g‐MA. The compatibilization efficiency of SEBS‐g‐MA for nylon‐rich PPS/PA66 was found to be higher than SEBS due to the in situ forming SEBS interphase between PPS and nylon 66. The correlation between the impact property and morphology of the SEBS‐g‐MA compatibilized PPS/PA66 blends is discussed. The excellent impact strength of the nylon‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
杨冬  梁效礼 《广州化工》2012,40(21):78-79,111
以尼龙6、尼龙66、尼龙6/66共聚物为原料,选取适宜的牌号、规格和配比,并添加各种改性剂,采用特殊的共混改性技术,在适宜的工艺条件下,用普通双螺杆挤出机中进行混炼,制造出吹塑级尼龙复合材料。测试结果表明:该复合材料熔体粘度高,足各种形状产品的一次吹塑成型,具有优异的吹塑加工性能。汽油透过量≤2 g/m2.24 h,零下40℃下的缺口冲击强度可达65~100 kJ/m2,具有良好的抗汽油透过性和低温抗冲击强度,可以作为严寒气候的摩托车/汽车油箱用。  相似文献   

17.
The polymerization process of nylon 66 salt solution is a dynamically controlled process. Based on the assumption of unequal activity of functional carboxyl and amido groups, a new nylon 66 salt solution polymerization kinetic model was established by introducing the nylon salt dehydration reaction to the acid-catalyzed third-order reaction kinetic model and fitted to obtain the corresponding key kinetic parameters. The fitted salt dehydration reaction rate constant was 8.17×10-3 kg?mol-1?h-1, while the activation energy was 19859 cal?mol-1, respectively. Compared with Mallon model, the new developed model has a better fitting effect and can accurately predict the change of the polymerization process in a wider range of temperature and water content. Simulation results showed that salt dehydration reaction has an important effect on the polymerization process and the polymerization efficiency was relatively lower with higher concentration of nylon salt, especially under low temperature and high water content. Appropriately increase the reaction temperature or reduce the initial water content can accelerate the nylon salt dehydration reaction, thereby increasing the polymerization reaction efficiency. New nylon salt polymerization kinetics modeling method is not only applicable to nylon 66, but also to nylon 1212 and other salt solution polymerization systems.  相似文献   

18.
王颖  林程  崔晶  奚桢浩  赵玲 《化工学报》2020,71(11):5208-5215
尼龙66盐溶液聚合过程属于动力学控制过程。基于官能团非等活性假设,在Mallon酸催化3阶反应动力学模型基础上,引入尼龙盐脱水反应,建立了新的尼龙66盐溶液聚合反应动力学模型,拟合得到了关键反应动力学模型参数,其中盐脱水反应速率常数为8.17×10-3 kg?mol-1?h-1、活化能为19859 cal?mol-1。与Mallon模型相比,新模型拟合效果更优,可在更宽的温度和水含量范围内准确预测聚合过程的变化。模拟仿真发现,盐脱水反应对聚合过程有重要影响,低温和高水含量下尼龙盐浓度高,聚合效率低;适当提高反应温度或降低初始水含量可以加快尼龙盐脱水反应,从而提高聚合反应效率。新的尼龙盐聚合动力学建模方法不仅适用于尼龙66,也可应用于尼龙1212等盐溶液聚合体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号