首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
MAH接枝EPDM增韧PA66的研究   总被引:7,自引:0,他引:7  
研究了MAH(马来酸酐)接枝三元乙丙橡胶(EPDM—g-MAH)对尼龙66(PA66)的增韧作用。利用SEM(扫描电镜)观察了共混体系的微观形貌(形态结构),并运用小角激光散射(SALS)方法研究了EPDM的加入对PA66结晶性能的影响。结果表明,未接枝的EPDM与PA66的相容性很差,而EPDM—g—MAH与PA66相容性明显增加,EPDM-g—MAH粒子均匀分散在PA66中,共混体系力学性能有很大提高。随着EPDM—g—MAH用量的增加,PA66球晶尺寸变小,共混体系界面结合更加紧密。  相似文献   

2.
(PE/POE)-g-MAH增韧尼龙6的研究   总被引:6,自引:0,他引:6  
马来酸酐接枝PE/POE(POE为乙烯—辛烯共聚物)对尼龙6(PA6)有显著的增韧效果。对马来酸酐接枝PE/POE的产物进行了红外光谱表征,证实了马来酸酐在PE/POE主链上的接枝。同时研究了(PE/POE)—g—MAH增韧PA6的形态、机械性能及简要的增韧机理。结果表明,PA6与(PE/POE)—g—MAH有很好的相容性,共混体系的缺口冲击强度比纯尼龙6有明显提高,当(PE/POE)—g—MAH用量达到30%时,可获得超韧尼龙。但同时,随着(PE/POE)—g—MAH用量的增加。共混体系的拉伸和扭曲强度有一定程度的下降,其中扭曲强度下降较为明显。  相似文献   

3.
聚苯硫醚的增强增韧研究   总被引:1,自引:0,他引:1  
将玻璃纤维和弹性体同时添加到聚苯硫醚(PPS)树脂中.通过双螺杆挤出机制备出聚苯硫醚复合材料;就玻璃纤维和弹性体对聚苯硫醚的增强增韧效果进行了研究,结果表明:玻纡对聚苯硫醚的增强效果比较明显,当玻纤质量分数达到20%时,共混体系的拉伸强度提高1倍,达到110 MPa;但玻纤对聚苯硫醚的增韧效果比较有限,当玻纤质量分数达到30%时,体系的冲击强度达到最大.弹性体EMG对聚苯硫醚具有很好的增韧作用,当其质量分数达到12%时,共混体系的缺口冲击强度达到18.2 kJ/m2;但同时体系的拉伸强度有一定程度的F降.  相似文献   

4.
用三元乙丙胶(EPDM)和三元乙丙胶接枝马来酸酐(MA)的共聚物(EPDM-g-MA)作为增韧增容材料,研究了PA66与EPDM-g-MA组成的二元共混体系(PA66/EPDM-g-MA)及PA66、EPDM和FPDM-g-MA组成的三元共混体系(PA66/EPDM/EPDM-g-MA)的各种力学性能。结果表明:随着EPDM-g-MA含量的增加,PA66/EPDM-g-MA二元共混体系的耐冲击性能明显提高,当EPDM-g-MA含量为20%(质量)时、Izod缺口冲击强度为纯PA66的7倍,但拉伸强度、模量等随之下降;对于PA66/EPDM/EPDM-g-MA三元共混体系,其力学性能介于PA66/EPDM和PA66/EPDM-g-MA两种二元共混体系之间。此外,本文还对EPDM与MA接枝物及EPDM与马来酸二丁酯(DBM)接枝物的制备作了初步探讨。  相似文献   

5.
PP/PA6/EPDM-g-GMA合金性能的研究   总被引:4,自引:0,他引:4  
许军  朱晨  王辉 《塑料工业》2006,34(6):15-18,45
在聚丙烯(PP)中加入10%~40%(质量分数)的PA6及反应增容剂EPDM—g—GMA对PP进行共混改性.观察和分析了共混合金的形貌及等温结晶形态,测试了合金的力学性能。结果表明:PP/PA6体系中加入EPDM—g—GMA后相容性改善;PP球晶尺寸随PA6的混入而减小,且PA6结晶相分布PP晶区内和PP晶区之问,加入EPDM—g—GMA后PA6结晶相尺寸减小;PP/队6体系中加入EPDM—g—GMA可起到反应增容和橡胶增韧的协同效应,使材料的韧性比纯PP明显提高;PP/PA6体系的杨氏模量高于PP,加入EPDM-g-GMA后杨氏模量比未增容体系提高不显著;PP/PA6体系的屈服强度随PA6用量的增加而下降,加入EPDM—g-GMA后屈服强度高于未增容体系但略低于PP。  相似文献   

6.
聚烯烃弹性体增韧改性聚碳酸酯的研究   总被引:1,自引:0,他引:1  
用四种聚烯烃弹性体对聚碳酸酯(PC)进行了增韧改性。探讨了不同种类和用量的增韧剂对聚合物共混物力学性能的影响。结果表明,EVA的加入使共混物韧性改善最明显,当其用量为15%时,材料的缺口冲击强度提高至38.7kJ/m^2,为纯PC的25倍,但材料的拉伸强度急剧下降。POE—g—MAH对PC的增韧效果仅次于EVA,但共混物的拉伸强度降低程度比EVA小,且共混物的断裂伸长率提高很多。其它两种共混体系PC/EAA、PC/LLDPE-g—MAH的性能介于EVA和POE—g—MAH之间。综合考虑材料的各种机械性能,添加20%的POE—g—MAH的PC共混物的性能较佳。  相似文献   

7.
EPDM接枝马来酸酐增韧酰胺6的性能及冲击断面形态   总被引:3,自引:0,他引:3  
研究了EPDM接枝马来酸酐(EPDM-g-MAH)用量对聚酰胺6(PA6)性能的影响及PA6/EPDM-g-MAH共混物的冲击断面形态。结果表明:EPDM-g-MAH分散相颗粒民PA6基体能形成牢固的结合,对PA6有显著的增韧性作用;当PA6/EPDM-g/MAH的用量比为90/10时,共混物的综合性能最理想,其常温(25℃)及低温(-20℃)下的冲击强度分别比纯PA6增大64.8%和106.6%。而且具有良好的挤出和注射成型加工性能。  相似文献   

8.
将玻纤增强尼龙66(PA66)和增韧剂通过双螺杆熔融共混挤出,制备增强增韧尼龙66复合材料。研究了三种增韧剂的加入量对尼龙66/玻璃纤维复合材料的拉伸强度、冲击强度及弯曲强度等力学性能的影响。实验结果表明:随着玻璃纤维含量的增加,共混体系的拉伸强度有大幅度的提高;随着增韧剂加入量的增加,尼龙66/玻璃纤维复合材料的拉伸强度和弯曲强度降低,冲击强度提高。增韧剂CMG9802的增韧效果优于另外两个增韧剂。  相似文献   

9.
研究了EPDM接枝马来酸酐 (EPDM g MAH)用量对聚酰胺 6(PA6)性能的影响及PA6/EPDM g MAH共混物的冲击断面形态。结果表明 :EPDM g MAH分散相颗粒与PA6基体能形成牢固的结合 ,对PA6具有显著的增韧改性作用 ;当PA6/EPDM g MAH的用量比为 90 /10时 ,共混物的综合性能最理想 ,其常温 (2 5℃ )及低温 (-2 0℃ )下的冲击强度分别比纯PA6增大 64 8%和 10 6 6% ,而且具有良好的挤出和注射成型加工性能。  相似文献   

10.
采用乳液聚合法制备了一系列马来酸酐(MAH)官能化的丙烯酸丁酯橡胶(PBA)与苯乙烯(St)及丙烯腈(AN)的接枝共聚物(PBA-g-SAN)核壳结构改性剂(ASA-g-MAH),用于聚酰胺6(PA6)的增韧。Molau实验证实了PA6/ASA-g-MAH共混体系中存在化学反应,考察了MAH含量对共混体系结构和性能的影响。结果表明,随着MAH含量的增加,PA6/ ASA-g-MAH共混物的冲击强度逐渐增大,当MAH含量为4 %(质量分数,下同)时材料冲击强度达到1008 J/m;与PA6/ASA共混物相比,PA6/ASA-g-MAH共混物具有较高的拉伸强度和断裂伸长率;随着MAH含量的增加,ASA- g-MAH在PA6基体中的分散程度越来越好,当MAH含量达到4 %以上时,无聚集现象发生;ASA-g-MAH中橡胶粒子的空洞化和PA6基体的剪切屈服是主要的增韧机理。  相似文献   

11.
王成  张勇 《中国塑料》2013,27(3):25-30
以聚酰胺66为基础树脂,核-壳结构硅橡胶为增韧剂,圆形玻璃纤维和扁平玻璃纤维为增强材料,无卤阻燃剂为阻燃材料,制备了无卤阻燃复合材料。通过万能拉伸试验机、摆锤冲击试验和UL 94测试仪分别研究了复合材料的力学性能和阻燃性能等。结果表明,随着硅橡胶含量的增加,复合材料的缺口冲击强度增加;在相同硅橡胶含量下,含扁平玻璃纤维的复合材料的韧性比含圆形玻璃纤维的韧性好;当硅的含量为6 %时,复合材料的综合性能最好,缺口冲击强度和未增韧的复合材料相比,分别提高了10 %(圆形玻璃纤维)和11 %(扁平玻璃纤维),拉伸强度保持在85 %以上,同时阻燃性能能够保持在UL 94 V-0等级。  相似文献   

12.
采用熔融共混法制备了增强增韧抗静电尼龙(PA)612材料,探讨了抗静电剂种类及用量对PA612材料抗静电性能的影响,同时研究了玻璃纤维(GF)和增韧剂三元乙丙橡胶接枝马来酸酐用量对材料力学性能的影响。抗静电性能测试结果表明,石墨烯、碳纳米管在表面电阻方面的渗流阀值明显小于导电炭黑,即石墨烯、碳纳米管对PA612的抗静电效果优于导电炭黑;高用量下,添加碳纳米管的材料表面电阻比添加石墨烯的低一个数量级,但碳纳米管的成本较高。力学性能测试结果表明,GF能大幅提高材料的拉伸与弯曲强度,增韧剂能大幅提高材料的冲击性能,当增韧剂质量分数不高于10%时,材料的拉伸与弯曲强度下降幅度较小。当抗静电剂石墨烯、GF及增韧剂质量分数分别为3%,40%和10%时,制得的PA612材料具有较好的综合性能,其拉伸强度为120 MPa,弯曲强度为210 MPa,常温缺口冲击强度为10 k J/m~2,-45℃缺口冲击强度为9.6 k J/m~2,表面电阻为1×1011Ω,可满足PA612在储存、运输和使用过程中的抗静电要求。  相似文献   

13.
采用熔融共混法制备了聚苯醚(PPO)/聚酰胺6(PA6)/三元乙丙橡胶(EPDM)三元和PPO/PA6/EPDM/滑石粉四元体系的共混合金,而且在制备四元共混合金时采取先用马来酸酐接枝的三元乙丙橡胶(EPDM-g-MAH)与滑石粉制成母粒,然后再将母粒与PPO、PA6共混的方法,研究了三元和四元共混体系的力学性能、流变性能和相态结构。结果表明:将制备的母粒与PPO和PA6进行共混,当母粒含量在一定范围内时可以实现弹性体和无机刚性粒子对体系的协同增韧作用,且母粒含量在15%时达到最佳,其增韧效果优于相同用量的纯EPDM-g-MAH弹性体增韧体系,同时母粒的加入可以改善共混体系的流动性,对拉伸强度的影响也比较小。  相似文献   

14.
采用熔融挤出过程中改变螺杆转速和添加引发剂的复合引发方法制备了马来酸酐接枝三元乙丙橡胶(EPDM-g-MAH),将其单独或与CaCO_3混合后改性聚酰胺66(PA66)。通过滴定分析、红外表征和熔体流动速率(MFR)测定等方法研究了175℃条件下螺杆转速对EPDM-g-MAH的MFR和接枝率的影响。探讨了接枝物和CaCO_3对PA66力学性能、热变形温度的影响。研究结果表明,改变螺杆转速可以有效控制接枝物凝胶含量(1%),提高接枝率和MFR;当接枝物用量为30份时,PA66/EPDM-g-MAH复合材料的简支梁缺口冲击强度为34.24 k J/m2,是纯PA66的3.89倍;当CaCO_3用量小于15份时,两种CaCO_3与EPDM-g-MAH均能够协同增韧PA66,当PA66/EPDM-g-MAH/CaCO_3配比为100/30/10时,加入超细活性重质CaCO_3及纳米CaCO_3的复合材料的简支梁缺口冲击强度均达到最大值,分别为纯PA66的4.35倍和4.10倍,超细活性重质CaCO_3的作用优于纳米CaCO_3。超细活性重质CaCO_3用量为20份时,PA66/EPDM-g-MAH复合材料的弯曲强度、热变形温度及MFR最佳,分别为59.42 MPa、81.6℃及9 g/(10 min)。  相似文献   

15.
偶联剂对池窑法玻纤增强PA66性能的影响   总被引:1,自引:0,他引:1  
用池窑法生产的高强短切玻璃纤维增强PA66,采用不同的偶联剂对玻璃纤维处理。通过试验验证及分析表明:玻纤增强PA66复合材料的拉伸强度、弯曲强度、硬度、简支梁冲击强度、热变形温度等性能比纯PA66都有不同程度的提高,玻纤质量分数在30%左右最佳;偶联剂A187在玻纤增强PA66中的辅助效果要优于偶联剂A1100。简单介绍了池窑法生产玻璃纤维的特点。  相似文献   

16.
郝成君  王勇 《化工时刊》2009,23(12):16-18
以通用型PVC树脂为基体,使用EPDM-g-MAH通过双螺杆挤出机对其进行共混改性,研究了EPDM-g-MAH的含量对EPDM-g-MAH与PVC共混合金的力学性能的影响。结果表明:随着EPDM-g-MAH含量的增加,合金的拉伸强度降低;断裂伸长率升高但有波动,超过20%后,不断增大;在EPDM-g-MAH含量0~5%范围内,合金的冲击强度随着弹性体的增加,5%时出现极大值,随后冲击强度有波动,在超过20%后,合金的冲击强度随EPDM-g-MAH含量的增加而增大。  相似文献   

17.
液晶共聚酯酰胺对PET/PA66的原位增容,增强,增韧作用   总被引:7,自引:0,他引:7  
研究了液晶共聚酯酰胺LC30对聚树苯二甲酸乙二酯/聚酰胺66共混物的原侠增容,增强,增韧作用。结果表明,LC30有效地改善了PET/PA66共混物的形态结构,对PET/PA66共混物起到了明显的增容作用。  相似文献   

18.
探讨了增韧剂、玻纤种类和螺杆组合对玻纤增强PA66冲击性能的影响。研究结果表明,加入增韧剂能够有效提高玻纤增强PA66的冲击性能,当增韧剂用量为3%时,材料具有最优的冲击强度和缺口冲击强度。特殊偶联剂处理的玻纤和合适的螺杆组合有助于玻纤在树脂基体中获得均匀分散和较窄的长度分布,并提高组分间的界面作用,得到冲击性能优异的玻纤增强PA66材料。  相似文献   

19.
Glass fiber reinforced composites can be recycled by combustion of the polymer in a fluidized bed and reclamation of the reinforcement. The effect of heat on the reinforcing properties of glass fibers was studied by measuring the strength of a composite incorporating heat cleaned glass cloth. This work was then extended by measuring the tensile strength of single fibers. An initial study of the residual strength of fibers processed in a fluidized bed was also undertaken by measuring the tensile strength of fibers recovered at two temperatures. It is concluded that low bed temperatures and short bed residence times are required to maximize the strength of the recovered fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号