首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究4,10-二硝基-2,6,8,12-四氧杂-4,10-二氮杂四环[5.5.0.05,903,11]十二烷(TEX)的稳定性,建立了TEX的高效液相色谱(HPLC)分析方法,采用TG-DTG和DSC研究了TEX的热行为,测定了不同升温速率(5、10、15、20和25K/min)下TEX的分解峰温,用Kissinger方法计算了TEX放热分解反应的表观活化能(Ek)和指前因子(A),用热力学方程计算了TEX放热分解反应的活化熵(△S≠)、活化焓(△H≠)和活化吉布斯自由能(△G≠)。结果表明,TEX对热较稳定,其热分解反应的△S≠、△H≠和△G≠值分别为501.03J/(K·mol)、432.48kJ/mol、145.26kJ/mol。  相似文献   

2.
在程序升温条件下,用DSC研究了2,5,7,9-四硝基-2,5,7,9-四氮杂双环[4,3,0]壬酮-8的放热分解反应动力学参数.表明该反应的微分形式的动力学模式函数、表观活化能(Ea)和指前因子(A)分别为3(1-α)[-ln(1-α)](2)/(3), 204.7 kJ/mol 和 1020.89 s-1.该化合物的热爆炸临界温度为188.81℃.反应的活化熵(ΔS≠)、活化焓(ΔH≠)和活化自由能(ΔG≠)分别为141.6 J/(mol*K), 200.9 kJ/mol 和136.8 kJ/mol.  相似文献   

3.
柠檬酸铈的热分解机理及反应动力学   总被引:1,自引:0,他引:1  
在程序升温条件下,用DSC、TG/DTG、固相原位反应池/FTIR联用技术,研究了柠檬酸铈的热行为、分解机理和常压非等温分解反应动力学参数,获得了相应的动力学方程.结果表明,柠檬酸铈的热分解反应存在1个脱水吸热阶段(Stage Ⅰ)和2个放热阶段(Stage Ⅱ和Ⅲ);主放热分解阶段(Stage Ⅱ)的表观活化能Ea和指前因子A分别为148.59kJ/mol和1011.64s-1;动力学方程可表示为:dα/dt=1011.81(1-α)[-ln(1-α)]1/3e-1.79×104/T;反应机理服从n=2/3的Avrami-Erofeev方程.由加热速率β→0的DSC曲线的初始温度(Te)和峰温(Tp)计算得柠檬酸铈的热爆炸临界温度值Tbc和Tbp分别为527.09K和542.71K.反应的△S≠、△H≠和△G≠分别为:16.82J·mol-1·K-1、163.11kJ/mol和158.74kJ/mol.  相似文献   

4.
苦味酸铋的合成、分解反应动力学及热安全性(英文)   总被引:1,自引:1,他引:0  
合成了苦味酸铋配合物(Bi-PA),对其结构进行了表征,并用TG-DTG及DSC技术研究了化合物的热行为和分解反应动力学。结果表明,在TG曲线上出现一个最大的失重阶段,对应于DSC曲线上的最大放热峰。放热分解反应过程可以认为是化学反应,其机理方程的微分式为f(α)=3(1-α)[-ln(1-α)]2/3,动力学方程为dα/dt=1013.51(1-α)[-ln(1-α)]2/3e-1.96×104/T。反应阶段的活化熵(ΔS≠),活化焓(ΔH≠)及活化自由能(ΔG≠)分别为2.25J.mol-1.K-1,159.82kJ.mol-1及158.60kJ.mol-1。  相似文献   

5.
为研究高燃速推进剂改铵铜(GATo)的热安全性,采用差示扫描量热(DSC)法和热重(TG)法分析了GATo推进剂的热分解过程,计算了其热分解活化能(E_a)、指前因子(A)、分解温度(t_(e0))、热爆炸临界温度(t_0)及热力学参数,并测试了压伸成型管状GATo及含溶剂GATo推进剂药浆的5s延滞期爆发点及热爆发反应参数。结果表明,采用Kissinger法计算得到GATo推进剂的热分解活化能为139.1kJ/mol,指前因子为7.5×10~(15)s~(-1),分解温度为172.0℃;根据Hu-Zhao-Gao法计算得到GATo推进剂的热爆炸临界温度为182.8℃,低于RDX-CMDB推进剂GHT及GHQ;在升温速率为10℃/min时,GATo推进剂分解峰值温度的活化自由能(ΔG~≠)为113.8kJ/mol,活化焓(ΔH~≠)为135.3kJ/mol,活化熵(ΔS~≠)为29.7J/(K·mol)~(-1);压伸成型管状GATo与含溶剂GATo药浆的5s延滞期爆发点分别为231和234℃,热爆发分解反应活化能分别为112和132kJ/mol,表明溶剂对其热爆发分解反应活化能有较大影响。  相似文献   

6.
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸铅等为原料,合成了1,1-二羟基-5,5′-联四唑羟胺铅盐(Pb-TKX-50)燃烧催化剂,研究了Pb-TKX-50对推进剂机械感度的影响以及与推进剂组分的相容性;利用差示扫描量热法和热重法研究了Pb-TKX-50在不同升温速率下的热分解过程,计算其表观活化能(E K和E O)和指前因子(A K),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质。结果表明,在推进剂配方中加入Pb-TKX-50燃烧催化剂,可以改善其撞击感度和摩擦感度,且与推进剂组分的相容性良好;Pb-TKX-50的主峰分解温度相对于TKX-50的主峰分解温度显著提高,说明其热稳定性显著提高。Ozawa法和Kissinger法得到Pb-TKX-50的表观活化能分别为181.45 kJ/mol和182.49 kJ/mol,且热分解过程符合Avrami-Erofeev方程;Pb-TKX-50的自加速分解温度和爆炸临界温度分别为500.53 K和544.33 K,表明其热稳定性良好;Pb-TKX-50催化剂的热分解自由能(ΔG^≠)为158.87 kJ/mol,活化焓(ΔH^≠)为187.03 kJ/mol,活化熵(ΔS≠)为52.98 kJ/mol。  相似文献   

7.
以二氯乙二肟、叠氮化钠、盐酸羟胺和三氯化钛等为原料,合成了1,1′-二羟基-5,5′-联四唑钛盐(Ti-BHT)燃烧催化剂。利用差示扫描量热法和热重法研究了不同升温速率下Ti-BHT金属盐的热分解过程,获得了热分解动力学参数和热分解机理函数;用Ozawa法和Kissinger法计算了热分解动力学参数,进而计算出自加速分解温度、热爆炸临界温度和热力学参数;用微量热法测定了Ti-BHT的比热容。结果表明,Ti-BHT的活化能Ek为143.49kJ/mol,指前因子Ak为1.23×10~(13)s~(-1),热分解属于n=3的随机成核和随后生长机理;自加速分解温度TSADT为466.21K,临界爆炸温度Tbpo为505.42K,热分解活化自由能ΔG~≠为142.74kJ/mol,活化焓ΔH~≠为139.41kJ/mol,活化熵ΔS~≠为-6.78J/(mol·K);Ti-BHT在298.15K的标准摩尔比热容为800.51J/(mol·K);摩擦爆炸概率为20%,特性落高大于125.9cm,说明其机械感度较低,具有较好的安全性能。  相似文献   

8.
用DSC-TG研究了TATB的热分解过程。根据升温速率分别为5、10、15、20K/min的DSC和TG-DTG曲线计算了分解反应的活化能(E)、指前因子(A)和120℃时的速率常数(k120),并计算了升温速率为5K/min时,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能,用小容量测试法研究了TATB在1-乙基-3-甲基咪唑醋酸盐/二甲基亚砜([Emim]Ac/DMSO)溶剂中的热爆炸特性。结果表明,采用Kissinger法和Ozawa法计算得到TATB分解反应的活化能分别为212.1和212.0kJ/mol,采用Rogers公式和Arrhenius公式计算得到A和k120值分别为5.87×1016s-1和3.87×10-12s-1;升温速率为5K/min条件下,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能分别为206kJ/mol、61.42J/(K·mol)和167.39kJ/mol,TATB粉末的临界爆炸温度为336.6℃;TATB在[Emim]Ac/DMSO溶剂中不爆炸。  相似文献   

9.
合成了一种希夫碱配合物[ErL(H2O)2]NO3·C2H5OH,通过元素分析、IR、UV和摩尔电导分析等,对其进行了表征,用非等温热重法研究了它的热分解反应动力学,推断出配合物的第3、4步热分解动力学方程均为:dα/dt=A·e-E/RT·3/2(1α)4/3[1/(1-α)1/3-1]-1。并计算出活化熵△S≠=103.0J/mol·K,活化吉布斯自由能△G≠=243.9kJ/mol。  相似文献   

10.
太根发射药的非等温热分解反应动力学   总被引:1,自引:0,他引:1  
采用热重分析(TG)技术研究了含二缩三乙二醇二硝酸酯(TEGDN,太根)和硝化甘油(NG)的双基发射药TG0604在常压动态气氛下的非等温热分解反应动力学.结果表明,TG0604的热分解过程分两个阶段,第Ⅰ分解阶段反应机理服从一级Mample法则,动力学参数:Ea=79.09kJ·mol-1,A=107.40s-1,动力学方程为dα/dt=107.40(1-α)e-0.95×104 /T;第Ⅱ分解阶段的反应机理服从三级化学反应,F3,减速型a-t曲线,动力学参数:Ea=214.79kJ·mol-1,A=1021.49s-1,动力学方程为dα/dt=1021.19(1-α)3e-2.58×104 /T.由加热速率β→0的DTG曲线的初始温度(Te)和峰温(Tp)计算出太根发射药TG0604的热爆炸临界温度值Tbe和Tbp分别为461.51K和478.14K.计算两个阶段的△S≠、△H≠和△G≠值,第Ⅰ阶段分别为-86.70J·mol-1·K-1、80.54kJ·mol-1和417.98kJ·mol-1;第Ⅱ阶段分别为214.78J·mol-1·K-1、236.95kJ·mol-1和136.07kJ·mol-1.  相似文献   

11.
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸锆等为原料,采用络合沉淀法合成了高能钝感的Zr(BHT)_2燃烧催化剂;利用差示扫描量热法(DSC)和热重法(TG)研究了不同升温速率下Zr(BHT)_2的热分解性能;分别利用Ozawa法和Kissinger法计算其表观活化能(EO和EK)和指前因子(Ak),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质;测试了其撞击感度和摩擦感度。结果表明,Ozawa法和Kissinger法计算得到Zr(BHT)_2的表观活化能分别为150.51和152.15kJ/mol,热分解过程符合Avrami-Erofeev方程;自加速分解温度和热爆炸临界温度分别为497.63和530.71K;热分解自由能(ΔG~≠)为122.04kJ/mol,活化焓(ΔH~≠)为147.88kJ/mol,活化熵(ΔS~≠)为50.27J/mol。感度测试结果表明,Zr(BHT)_2燃烧催化剂对撞击和摩擦均钝感,安全性较高。  相似文献   

12.
室温下合成了6种未见报道的固态含能配合物M(BTA)(bpy)m.nH2O(M=Mn,m=1,n=1;M=Co,m=2,n=5;M=Ni,m=2,n=6;M=Cu,m=2,n=0;M=Zn,m=2,n=1;M=Pb,m=1,n=0;BTA=N,N’-二四唑胺离子,bpy=2,2’-联吡啶),对它们进行了组成、红外光谱、密度等表征。测定了298.15 K下各配合物的液相生成反应焓变△rHmθ,改变液相反应温度,在实验和计算基础上,得到了液相生成反应的热力学参数(活化焓△Hθ≠、活化熵△S≠θ和活化自由能△Gθ≠)、速率常数k和动力学参数(表现活化能E、频率因子ln[A/s]和反应级数n)。  相似文献   

13.
研究温度对印楝素A、6-deacetylnimbin、6-deacetylsalannin、nimbin和salannin 5种同系物稳定性的影响。建立在不同温度条件下印楝素A及同系物的一级降解动力学模型,计算印楝素A及同系物降解反应的反应速率常数、温度效应系数(Q)、活化能(Ea)、活化焓(?H)和活化熵(?S)。结果表明,印楝素A及同系物在25℃条件下较为稳定,大于35℃时降解速率明显增大。印楝素A、6-deacetylnimbin、6-deacetylsalannin、nimbin和salannin 5种同系物的活化能分别为98.49kJ/mol、92.43kJ/mol、96.76kJ/mol、95.23kJ/mol和104.79kJ/mol,活化焓分别为95.84kJ/mol、89.78kJ/mol、94.11kJ/mol、92.58kJ/mol和102.14kJ/mol,活化熵分别为10.68kJ/mol·K、1.60kJ/mol·K、19.58kJ/mol·K、4.76kJ/mol·K和27.32kJ/mol·K。印楝素A及同系物在环境中的降解反应是自发反应,在环境中易自然降解。  相似文献   

14.
利用微量热量计测定了氯乙醛和肼基甲酸乙酯在水溶液中(298.15K)生成氯亚乙基肼基甲酸乙酯的反应焓变为(-13.035±0.088)kJ/mol。计算得出该反应的热动力学参数:反应级数n=1;速率常数k=2.018×10-3s-1及反应活化自由能ΔG ≠=88.408kJ/mol。结果表明,该反应在室温下易于进行。  相似文献   

15.
在模拟动物体生理pH条件下,用荧光光谱法(FS)和电化学法研究了芦丁铕配合物(rutin-Eu)与人血清白蛋白(HSA)的结合反应.探讨了rutin-Eu对HSA的荧光猝灭过程的猝灭机理,以Lineweaver-Burk双倒数方程分别计算了不同温度下rutin-Eu与HSA的结合常数(KLB,295K:1.540×106L/mol,310K:1.265×106L/mol)、结合距离(r=2.28nm)和热力学参数(△Η=-9.97kJ/mol;295K:△S=84.64J/K,△G=-34.94kJ/mol;310K:△S=84.65J/K;△G=-36.21kJ/mol),并判断rutin-Eu与HSA结合的作用力类型;同时用圆二色谱及同步荧光光谱法探讨了rutin-Eu对HSA构象的影响.结果表明,rutin-Eu与HSA结合形成复合物,导致HSA内源性荧光猝灭是由于分子内的非辐射能量转移而引起的静态猝灭;它们之间的主要作用力是静电作用力而结合距离r为2.28nm.同步荧光光谱法和圆二色谱法表明rutin-Eu对HSA的构象有影响,可使HSA的二级结构发生改变.  相似文献   

16.
兰军  吴贤熙  解元承 《应用化工》2007,36(10):961-963
根据温元凯算法的主体思想,计算了一元和三元型硫铝酸钙的Gibbs自由能和其反应Gibbs自由能分别为G3oCaO.Al2O3.CaSO4.12H2O=-8 984.805 kJ/mol和G3oCaO.Al2O3.3CaSO4.6H2O=-10 076.685 kJ/mol。铝酸钠溶液脱硫反应的Gibbs自由能△G1o=-195.265 kJ/mol,△G2o=-187.725 kJ/mol,两式中△Gor<<0。由计算结果可知,有望实现以生成三元型硫铝酸钙的形式脱硫,使脱硫的效率提高3倍,且降低Al2O3损失。  相似文献   

17.
大孔树脂对有机废水中苯酚的吸附性能   总被引:1,自引:0,他引:1  
研究了新型大孔树脂XDA-200对苯酚的吸附性能.实验结果表明,大孔树脂XDA-200对苯酚的最佳吸附pH=6.4,在温度298K时其静态平衡吸附容量为277mg/g树脂.用0.5mol/L NaOH溶液作为解吸剂,一次解吸率可达82.8%.树脂吸附苯酚的过程,符合Freundlich经验式以及Langmuir经验式.树脂吸附苯酚的表观反应速率常数为k298=2.38×10-2/S,表现吸附活化Ea=1.74kJ/mol,测得热力学参数分别为吸附过程热效应AH=5.31kJ/mol,熵变△S=50.8J/mol·K,以及温度288K,298K和308K时的自由能变为:△G288=9.32kJ/mol,AG198=9.83kJ/mol,AG308=-10.34kJ/mol.  相似文献   

18.
4-甲基-2-(α-甲基苄基)酚铷钾萃取反应机理及热力学研究   总被引:1,自引:0,他引:1  
为使卤水中的铷钾得到有效分离,文中研究了4-甲基-2-(α-甲基苄基)酚/脱芳溶剂油在碱性溶液中萃取铷、钾中的反应机理。通过考查分配比与p H值以及萃取剂浓度的关系,采用斜率法与饱和容量法测得了萃合物的组成为MOR·2ROH(M为K~+或Rb~+),确定了萃取反应方程式,证明了该萃取反应为阳离子交换机理,求得表观平衡常数K(Rb)=30.20,K(K)=14.79。通过考查分配比与温度的关系,求得萃取熵ΔS(Rb)=-128.94 J/(K·mol),ΔS(K)=-85.83 J/(K·mol);萃取焓ΔH(Rb)=-29.49 kJ/mol,ΔH(K)=-18.59 kJ/mol;吉布斯自由能ΔG(Rb)=-8.31 kJ/mol,ΔG(K)=-6.57 kJ/mol,证明萃取反应为放热反应,铷的萃取能力大于钾。  相似文献   

19.
改性凹凸棒石黏土对低浓度磷的吸附热力学   总被引:3,自引:0,他引:3  
通过静态吸附实验,研究了凹凸棒石黏土经改性后对水溶液中低浓度磷的吸附热力学特性,测定了288~318K范围内的吸附等温线。结果表明:改性凹凸棒石黏土对水溶液中低浓度磷的吸附符合Langmuir等温方程。根据热力学函数关系计算出吸附过程的焓变(△H)为47.65kJ/mol,吸附Gibbs自由能(△G)为–21.46~–30.46kJ/mol,表明改性凹凸棒石黏土对水溶液中低浓度磷的吸附是自发的吸热过程,是物理吸附和化学吸附并存的过程。吸附熵变(△S)为35.13J/(mol·K),表明该吸附过程是熵增过程。  相似文献   

20.
郝艳玲  刘昌宁 《硅酸盐通报》2015,34(4):1144-1149
以十六烷基三甲基溴化铵(CTMAB)对坡缕石黏土改性,研究改性坡缕石黏土吸附Cr(Ⅵ)的主要影响因素,探讨吸附平衡、热力学特征和吸附机理,由红外光谱和热重分析了改性坡缕石的结构.结果显示,CTMAB改性可使坡缕石表面荷正电,对Cr(Ⅵ)吸附能力显著提高,吸附作用随介质pH值的升高而减弱,吸附平衡能较好地符合Langmuir方程和R-P方程,△G为-22.68~-21.99 kJ/mol,吸附过程放热,△H为-15.57 kJ/mol,吸附主要是物理作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号