首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用羰基铁粉粒子填充天然橡胶磁流变弹性体(MRE),研究了各向同性与各向异性MRE的磁流变性能及导热性能。结果表明,各向异性MRE的热扩散系数和导热系数比各向同性MRE分别提高了30. 1%和41. 9%。同时,随着应变的增大,MRE的相对磁流变效应呈下降趋势,而在相同应变下,各向异性MRE的储能模量以及相对磁流变效应均高于各向同性MRE。  相似文献   

2.
3.
以天然橡胶为基体制备磁流变弹性体(MRE),研究MRE的Payne效应及磁感应强度和磁流变效应。电子显微镜分析得出,对于羰基铁粉质量分数最大(81.67%)的MRE,羰基铁粉分布密集,出现羰基铁粉团聚现象。流变仪测试结果表明:随着羰基铁粉质量分数的增大,MRE的Payne效应和磁流变效应增强;随着应变的增大,MRE的储能模量减小,损耗因子增大。  相似文献   

4.
采用4种改性剂离子液体、硅烷偶联剂、油酸及硬脂酸改性羰基铁粉,以天然橡胶作为基质,研究了不同改性剂对天然橡胶基磁流变弹性体(MRE)磁流变性能的影响。结果表明,改性剂能明显提高天然橡胶基MRE的磁流变效应,其中油酸改性后的MRE的相对磁流变效应比未改性者提高了229%。扫描电镜照片显示改性后MRE中的磁性粒子呈现出定向链状结构,链段变得更加完整。  相似文献   

5.
介绍了磁流变液这种智能材料的组成、特性及流变机理,并通过实验对汽车磁流变液离合器系统中磁流变液磁扭转力与电流及其自身磁粉固含量之间的曲线关系进行了分析.  相似文献   

6.
研究了羰基铁粉含量和硫化温度对天然橡胶基磁流变弹性体(MRE)结构和性能的影响。结果表明,随着羰基铁粉用量的增加,MRE的交联密度降低,硫化速率提高,硫化胶的拉伸强度和扯断伸长率明显下降,胶料的热稳定性提高;随着硫化温度的升高,MRE的焦烧时间缩短,硫化返原现象严重,128℃下制备的MRE中羰基铁粉的链状结构最为明显,143℃下则不呈链状结构;在硫化温度128℃、羰基铁粉用量为60份时,制得的MRE的磁流变效应最高,达到48.9%。  相似文献   

7.
以天然橡胶(NR)为基体,羰基铁粉为磁性粒子制备了NR基磁流变弹性体(NR-MRE),考察了不同硫化体系,如传统硫化(CV)体系、半有效硫化(SEV)体系、有效硫化(EV)体系和平衡硫化(EC)体系对NR混炼胶硫化特性及NR-MRE物理机械性能、磁流变性能、热稳定性、微观形貌的影响,并表征了NR-MRE的微观形貌。结果表明,在4种硫化体系中,CV体系的NR混炼胶硫化返原程度较为严重,NR-MRE的磁流变弹性体具有最高的拉伸强度和磁流变效应(EMR)以及最差的热稳定性; EC体系的NR混炼胶硫化返原程度不明显,硫化速率最慢,NR-MRE的拉伸强度最低; EV体系的NRMRE的EMR最低,热稳定性最好。在4种硫化体系的NR-MRE中,羰基铁粉均呈现清晰的链状结构,其中CV体系最明显,EC体系排布与SEV体系相似,但团聚比SEV体系严重。  相似文献   

8.
9.
以天然橡胶(NR)为基体,考察了4种牌号(EW、SM、SQ、CN)的羰基铁粉对NR混炼胶的硫化特性及NR基磁流变弹性体(MRE)在压缩状态下的磁流变性能、物理机械性能、热稳定性及微观形态的影响。结果表明,EW、SM、SQ、CN的平均粒径依次增大,且CN具有最宽的粒径分布,EW具有最窄的粒径分布;在4种牌号的羰基铁粉中,SM填充NR混炼胶的焦烧时间和正硫化时间最短,硫化速率最快;随着羰基铁粉粒径的增加,NR混炼胶的交联密度增大,在硫化过程中均出现的硫化返原程度加剧;SM填充MRE的磁流变效应最高,CN填充MRE的磁流变效应最低;随着羰基铁粉粒径的增加,MRE的邵尔A硬度无明显变化,300%定伸应力呈上升趋势,拉伸强度和扯断伸长率都有所降低,其中CN填充MRE的耐热稳定性最好;在4种牌号的羰基铁粉填充MRE中,CN和SQ的整体粒径较大,且CN有较明显的块状团聚,而SM和EW的整体粒径较小。  相似文献   

10.
制备了Fe-Si和羰基铁粉(CIP)粒子填充顺丁橡胶(BR)基磁流变弹性体(MRE),研究了2种粒子对BR基MRE磁流变性能和力学性能的影响。结果表明,随着应变的上升,MRE的相对磁流变性能呈下降趋势,在相同应变下,Fe-Si粒子填充BR基MRE的相对磁流变效应大于CIP填充的MRE;与BR/CIP相比,BR/Fe-Si的拉伸强度、300%定伸应力及扯断伸长率明显下降。  相似文献   

11.
The highly filled anisotropic polyurethane (PU) magnetorheological elastomers (MREs) were prepared through an in‐situ one‐step polycondensation process under a magnetic field. The carbonyl iron formed chain‐like structure, which was fixed in the PU matrix. The plasticizer diisooctyl phthalate (DOP) was incorporated into PU to soften the matrix and improve the MR effect. The influence of DOP on the microstructure and properties of PU MREs were investigated. The incorporation of DOP reduced the viscosity of the prepolymer and made the carbonyl iron align more easily in the PU matrix. The aligned chain‐like structure of carbonyl iron in PU greatly enhanced the thermal conductivity and the compressive properties of PU MREs. The incorporation of DOP reduced the modulus of PU MREs and the glass transition temperature of the soft segments of PU. But highly filled carbonyl iron and DOP led to a decrease in the thermal stability to some extent. The MR test showed that DOP plasticization significantly enhanced both absolute and relative MR effect simultaneously. With 70 wt% carbonyl iron and 15 wt% DOP (the weight ratio of Fe: PU: DOP is 70 : 15: 15), the absolute and relative MR effects of anisotropic PU MREs were ~ 1.16 MPa and ~ 386.7%, ~ 3.5 and ~ 58 times of the PU MRE without the plasticizer at the same iron content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A novel compressible magnetorheological fluid (CMRF) has been synthesized with additives that provide compressibility to the fluid. This CMRF has been designed to provide an elastic component to a magnetorheological fluid (MRF) that can be used as a springless damper. CMRF provides controllable compressibility to the MRF. The controllability of the fluid is achieved by the use of magnetic particles and an external magnetic field, and the fluid is made compressible by the addition of suspended compressible polymer particles. The compressibility of the fluid has been characterized with force–displacement measurements. This CMRF has controllable off‐state viscosity and high shear yield stress. The incorporation of polymeric particles into the MRF also decreases the settling of iron particles and improves the redispersion of the fluid. To make the fluid more redispersible, the surface of the iron particles is coated with a high‐temperature fluorinated polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A new class of materials termed magnetorheological elastomers (MREs) are developed that respond to externally imposed magnetic fields. Magnetic particles are embedded in viscoelastic solids or liquid elastomeric precursors. This kind of composite demonstrates a unique combination of good magnetic controllability and elastic properties. Polybutadiene (hydrocarbon based) based polyurethane MREs are developed because of their thermooxidative, hydrolytic, and chemical resistance. The structure–property relationships of polyurethane–MREs are investigated using several characterization techniques. Morphological features such as interdomains of soft and hard segments are identified with tapping‐mode atomic force microscopy. The thermal and mechanical behavior is evaluated with dynamic mechanical analysis, differential scanning calorimetry, and stress–strain tests. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Novel magnetorheological fluids—supramolecular magnetorheological polymer gels (SMRPGs)— were investigated. Supramolecular polymer deposited on the surface of iron particles was suspended in the carrier fluids. The supramolecular network was obtained by metal coordination between terpyridine monomers and zinc ion. These SMRPGs had such advantages as controllable off‐state viscosity, a reduced iron particle settling rate, and stability. The viscoelastic behavior of SMRPGs with small‐ and large‐amplitude oscillatory shear was investigated using the amplitude and frequency sweep mode. The effects of strain amplitude, frequency, and magnetic field strength on the viscoelastic moduli were measured. The linear viscoelastic (LVE) strain range was obtained by the oscillation and static stress strain methods. The maximum LVE value was equal to the preyield strain point, 0.3%. Microstructural variation of SMRPG is proposed as an explanation of the rheological changes in the oscillation tests. The results of this research indicate that off–state viscosity and particle settling can be controlled by adjusting the concentration of supramolecular polymer gel. Dynamic yield stress significantly increased with an external magnetic field up to ~23,500 Pa under a magnetic flux density of 500 mT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2464–2479, 2006  相似文献   

15.
Magnetorheological (MR) fluids based on glycol, iron powder, polyvinylpyrrolidone (PVP), and carbon nanotubes (CNTs) were prepared. Effects of polyvinylpyrrolidone and carbon nanotubes on sedimentation stability and magnetorheological properties were studied. It is found that the synergetic effects of PVP and CNTs improve the sedimentation stability significantly, and the addition of CNTs reduces the sedimentation velocity and increases the equilibrium sedimentation ratio of the magnetizable particles in MR fluids remarkably. The addition of PVP can reduce the sedimentation velocity of the magnetizable particles, but cannot increase the equilibrium sedimentation ratio and will not change the up trend of apparent viscosity with the increasing intensity of the external magnetic field. When the PVP content is lower, the increment of original apparent viscosity of the MR fluids at zero‐intensity of magnetic field is inconspicuous, and their values of apparent viscosity under magnetic field are similar. However, the apparent viscosity of the MR fluids increases tremendously when the contents of PVP increase to certain degree. The results show that the synergetic effects of PVP and CNTs not only improve the sedimentation stability of the MR fluid but also promote its magnetorheological effect. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1653–1657, 2006  相似文献   

16.
Magnetorheological materials have been used in many applications in recent years. To develop new materials, polyurethane and silicone polymer gels were investigated. Rheology is qualitatively controlled for each system by controlling the concentration of reactants and diluents. The resulting polymers have solid, gel, or liquid states, depending on the crosslinking and dilution. The gels were characterized through kinetic analysis. Differential scanning calorimetry (DSC) was used with analysis methods to find the kinetic properties for diluted and undiluted polyurethane systems. Heat of reaction, order of reaction, preexponential constant, and activation energy were obtained from the experimental DSC data. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2733–2742, 2002  相似文献   

17.
Magnetorheological polymer gels (MRPGs) are composite fluids containing ferrous particles suspended in a polymer gel. In addition to modification of the carrier fluid, the polymer gel, which includes crosslinked copolyimide (CCPI) and solvent N‐octylpyrrolidone, also changes the surface properties of the ferrous particles, thus reducing the particle settling and improving particle redispersion. The viscosity of MRPGs can be easily adjusted by controlling the concentration of CCPI in the carrier medium. High thermally resistant CCPI is synthesized from dianhydride, diamine, diaminobenzonic acid, and crosslinker and has a high glass transition temperature because the crosslinking ratio can be controlled by the molar ratio of diamine to diaminobenzonic acid. The redispersion and rheological properties are also investigated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2402–2413, 2005  相似文献   

18.
通过回顾磁流变液智能流体的组成及制备方法,分析了磁流变液智能流体主要流变机理以及在工程中的应用前景,并着重介绍了磁流变液在油气田开发中的研究进展。基于磁流变液特点、应用环境以及使用成本等因素,指出了磁流变液智能流体未来向高温稳定、可循环利用以及环境友好发展的新趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号