首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用化学镀方法在钕铁硼表面分别制备Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层,并研究了不同化学镀层在模拟海洋大气环境中的腐蚀行为。结果表明:Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层都完整覆盖钕铁硼表面,它们的粗糙度差别不大,在模拟海洋大气环境中的腐蚀失重都低于钕铁硼的腐蚀失重,容抗弧半径增大且电荷转移电阻有不同程度的提高。与Ni-P合金镀层和Ni-Mo-P合金镀层相比,Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层具有优良的耐腐蚀性能,原因在于PTFE颗粒较均匀的沉积在镀层表面增加一道屏蔽层,也起到阻碍腐蚀介质渗透腐蚀的作用。尤其是Ni-Mo-P/PTFE复合镀层,其表面更致密,PTFE颗粒沉积更均匀,能更有效延缓腐蚀介质与钕铁硼接触,显著提高钕铁硼在模拟海洋大气环境中的耐腐蚀性能。  相似文献   

2.
通过正交试验,对化学镀Ni-P合金镀层的基础镀液配方和工艺条件进行了优化。向优化的基础镀液中加入PTFE乳液和表面活性剂FC4,以化工管材常用的材料20~#钢为基体,在PTFE乳液16~30 mL/L、FC4 0.40~0.60 g/L、温度86℃、pH值5.5的条件下,制备出表面呈明显疏水性的化学镀Ni-P/PTFE复合镀层。  相似文献   

3.
针对Cu-Sn-Zn合金镀层自润滑性能差的缺点,在Cu-Sn-Zn合金镀液中加入聚四氟乙烯(PTFE)乳液,采用电沉积方法在45#钢表面制备了Cu-Sn-Zn-PTFE复合镀层。镀液组成和工艺条件为:焦磷酸铜24g/L,氯化锌12g/L,甲基磺酸锡15g/L,焦磷酸钾20g/L,酒石酸钾钠22g/L,全氟辛基磺酸钾18g/L,PTFE乳液32g/L,温度50~60℃,pH值11.5,电流密度1.2A/dm~2,搅拌转速300~600r/min,时间120min。考察了镀液中PTFE的质量浓度对镀层的耐磨性、显微硬度、结合力、PTFE的质量分数、外观的影响,并表征了Cu-Sn-Zn-PTFE复合镀层的表面形貌、结构和成分。随着镀液中PTFE的质量浓度的增加,镀层的耐磨性改善,显微硬度和结合力下降,PTFE的质量分数先增大然后保持不变。镀液中PTFE的最佳质量浓度为32g/L,在此条件下制得的Cu-Sn-Zn-PTFE复合镀层的综合性能最佳。  相似文献   

4.
使用扫描电镜、能谱仪、X射线衍射仪和电化学工作站,研究了温度对化学镀Ni-Co-P/PTFE复合镀层的表面质量、成分和耐蚀性的影响,并表征了化学镀Ni-Co-P/PTFE复合镀层的相结构。结果表明:温度升高(65~85℃)使化学镀Ni-Co-P/PTFE复合镀层的表面质量有所改善,PTFE的掺杂量增大,这对提高化学镀Ni-Co-P/PTFE复合镀层的性能是有利的。85℃时制备的化学镀Ni-Co-P/PTFE复合镀层为非晶态结构,其自腐蚀电位为-0.232 V,自腐蚀电流密度为1.32×10~(-6) A/cm~2,极化电阻达到最大值29.1 kΩ·cm~2,腐蚀速率达到最小值0.015 mm/a,此时的化学镀Ni-Co-P/PTFE复合镀层具有优良的耐蚀性。  相似文献   

5.
在机械泵旋片用45Mn钢板表面制备了化学镀Ni-P/PTFE复合镀层,并研究了PTFE的质量浓度对化学镀Ni-P/PTFE复合镀层的沉积速率、耐磨性、耐蚀性及表面形貌的影响。结果表明:适当增加PTFE的质量浓度,有利于加快沉积速率,提高化学镀Ni-P/PTFE复合镀层的耐磨性和耐蚀性。化学镀Ni-P/PTFE复合镀层表面呈胞状形貌,PTFE均匀分布在表面。当PTFE的质量浓度为8 g/L时,化学镀Ni-P/PTFE复合镀层具有最佳的耐磨性和耐蚀性。  相似文献   

6.
在电厂冷却水管常用的20#钢表面化学镀Ni-Co-P镀层,并以沉积速率作为指标,通过单因素实验得到化学镀Ni-Co-P镀层较优的溶液成分和工艺条件.在此基础上,通过向溶液中添加PTFE制备出Ni-Co-P/PTFE复合镀层,进一步研究了PTFE浓度对Ni-Co-P/PTFE复合镀层防垢耐蚀性能的影响.结果表明,随着PTFE浓度增加,Ni-Co-P/PTFE复合镀层的生垢速率和平均腐蚀速率都呈先减小后增大的趋势,与PTFE质量分数先升高后下降有关联性.PTFE浓度为25 mL/L时,Ni-Co-P/PTFE复合镀层的生垢速率和平均腐蚀速率均最小,依次为1.66×10-2 g/(m2·h)和1.85×10-5 g/(cm2·h).该复合镀层经24 h生垢实验后表面的污垢呈稀疏分布,覆盖面积小,经84 h浸泡实验后表面的蚀坑相对较小,表现出较好的防垢耐蚀性能.  相似文献   

7.
在汽车用碳锰钢(16Mn钢)表面制备了化学镀Ni-Mo-P合金镀层,并研究了pH值对化学镀Ni-Mo-P合金镀层性能的影响。结果表明:升高pH值有利于增大化学镀Ni-Mo-P合金镀层的沉积速率及厚度。但当pH值大于10时,镀液容易发生水解。随着pH值的增大,化学镀Ni-Mo-P合金镀层中钿的质量分数逐渐提高,进一步提高了化学镀Ni-Mo-P合金镀层的显微硬度和耐蚀性。化学镀Ni-Mo-P合金镀层呈现出典型的颗粒结构,增大pH值有利于细化晶粒。当pH值为11时化学镀Ni-Mo-P合金镀层具有最高的显微硬度和最佳的耐蚀性。  相似文献   

8.
采用单因素实验法研究PTFE浓度对电厂冷却水管常用的20#钢表面Ni-Mo-P/PTFE镀层的形貌和防垢性能的影响.结果表明,不同PTFE浓度下复合镀层的形貌特征既存在相似之处也存在差异.在5~20 mL/L的范围内随着PTFE浓度增加,复合镀层平整度提高,生垢速率减小,主要归因于复合镀层中PTFE质量分数逐渐升高.但当PTFE浓度超过20 mL/L,随着PTFE浓度继续增加,复合镀层平整度和防垢性能有所下降.PTFE浓度为20 mL/L时,该复合镀层表面较为平整,PTFE质量分数达到3.19%,具有相对较好的防垢性能.  相似文献   

9.
针对Cu–Ni–Sn合金自润滑性能差的问题,向Cu–Ni–Sn合金镀液中加入聚四氟乙烯(PTFE)乳液,采用电沉积法在45钢表面制备了Cu–Ni–Sn–PTFE复合镀层。镀液组成和工艺条件为:氰化亚铜35 g/L,游离氰化钠10 g/L,锡酸钠10 g/L,氯化镍15 g/L,蛋氨酸20 g/L,甲基磺酸18 g/L,60%PTFE乳液5~15 m L/L,电流密度1 A/dm~2,温度50~60°C,pH 10,时间2 h。考察了镀液PTFE含量对镀层的耐磨性、显微硬度、结合力、PTFE含量以及外观的影响,表征了Cu–Ni–Sn–PTFE复合镀层的形貌、结构和成分。随着镀液PTFE含量的升高,镀层的耐磨性改善,但显微硬度和结合力下降,厚度和PTFE含量则先升后降。镀液中PTFE的最佳添加量为10 m L/L,此添加量下所得Cu–Ni–Sn–PTFE复合镀层的综合性能最佳。  相似文献   

10.
在45#钢上化学镀Ni–P–PTFE复合镀层,其工艺流程主要包括化学机械抛光、碱性除油、活化、化学镀和干燥。研究了主盐和还原剂质量浓度、pH、温度以及PTFE体积分数对镀速的影响。观察了Ni–P–PTFE镀层的表面形貌,测试了镀层的摩擦学性能。结果表明:当工艺条件为25 g/L硫酸镍、30 g/L次磷酸钠、10 mL/L PTFE、pH 4.6和温度(92±2)°C时,镀速最佳,镀层的摩擦因数在0.16~0.20之间,具有优良的耐磨性能。  相似文献   

11.
工艺条件对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响   总被引:5,自引:1,他引:5  
研究了电流密度,镀液温度、pH值和PTFE等对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响。结果表明,镀态下镀层的硬度在420-550Hv之间,当镀液中PTFE浓度为25ml/L时,磨损量最小,但镀层的耐蚀性却最差;而当镀液中PTFE浓度为30ml/L时,则具有良好的综合性能。  相似文献   

12.
采用不同浓度的硫酸、磷酸溶液为腐蚀介质,研究了RE—Ni—W—P—SiC—PTFE复合电镀层于镀态下及经不同温度热处理后的腐蚀速率与阳极极化曲线,并与RE—Ni—W—P—SiC复合电镀层的阳极极化曲线进行了比较。结果显示,RE—Ni—W—P—PT—FE—SiC复合镀层在硫酸、磷酸溶液中的腐蚀规律基本一致,即在镀态或热处理条件下,随着硫酸或磷酸浓度的增加,其腐蚀速率上升,当硫酸浓度达到lO%~20%或磷酸浓度达到40%时,腐蚀速率最高;继续增加硫酸或磷酸浓度,复合镀层的腐蚀速率又降低。阳极极化曲线表明:200℃或500℃热处理后复合镀层具有较好的耐蚀性;该镀层热处理后耐蚀性要优于镀态下及热处理后的RE—Ni—W—P—SiC镀层。  相似文献   

13.
化学复合镀Ni-P—PTFE的镀速及镀层摩擦学性能研究   总被引:4,自引:2,他引:2  
在45#钢上化学镀Ni-P-PTFE复合镀层,其工艺流程主要包括化学机械抛光、碱性除油、活化、化学镀和干燥,研究了主盐和还原剂质量浓度、pH、温度以及PTFE体积分数对镀速的影响.观察了Ni-P-PTFE镀层的表面形貌,测试了镀层的摩擦性能.结果表明:当工艺条件为25 g/L硫酸镍、30 g/L次磷酸钠、10 mL/L PTFE.pH 4.6和温度(92±2)℃时,镀速最佳,镀层的摩擦因数在0.16~0.20之间,具有优良的耐磨性能.  相似文献   

14.
研究了镀液中SiC的质量浓度对化学镀Ni-P-SiC复合镀层中SiC的质量分数、表面形貌、镀速、耐蚀性、硬度、孔隙率及耐磨性的影响,并考察了稀土对镀层性能的影响。结果表明:随着镀液中SiC的质量浓度的增加,镀层中SiC的质量分数先增大后减小;当镀液中SiC的质量浓度过高时,镀层中会出现SiC微粒团聚的现象;化学镀Ni-P-SiC复合镀层的耐蚀性优于化学镀Ni-P合金镀层的耐蚀性;当镀液中SiC的质量浓度为8g/L时,镀层具有较高的硬度和较好的耐磨性;向镀液中添加适量的氧化铈可以细化镀层晶粒。  相似文献   

15.
ABS塑料化学镀铜工艺   总被引:3,自引:0,他引:3  
介绍了ABS塑料表面化学镀铜的工艺流程,讨论了粗化温度和时间、敏化和活化时间、硫酸铜质量浓度、甲醛体积浓度、酒石酸钾钠质量浓度、镀液温度和镀液pH对镀层质量以及化学镀铜沉积速率的影响。确定了最佳工艺条件为15~20g/L硫酸铜、15mL/L甲醛、14g/L酒石酸钾钠,镀液温度为323K,镀液的pH为11~12。扫描电镜表明,所得镀层均匀、光亮,结合力好。  相似文献   

16.
本文以亚氨基二乙酸为络合剂,次磷酸钠为还原剂,在酸性条件下研究了镀液组成对化学镀铜沉积速率和镀液稳定性的影响。结果表明:化学镀铜的沉积速率随着温度、硫酸铜浓度和次磷酸钠浓度的增加而升高,随着亚氨基二乙酸浓度和镀液pH的增加而降低。极化曲线试验结果表明:随着镀液pH的降低,阴极还原峰电位正移,峰电流密度增大,加速了铜络离子的还原,提高了化学镀铜的沉积速率。采用扫描电镜和原子力显微镜观察了镀层形貌。  相似文献   

17.
铝基体复合电沉积镍–碳纳米管复合镀层   总被引:1,自引:0,他引:1  
采用电沉积法在铝基体上制备了镍–碳纳米管复合镀层,探讨了镀液中碳纳米管含量、电流密度、搅拌速率、温度、电镀时间等因素对镀层碳纳米管含量和厚度的影响,得出制备镍–碳纳米管复合镀层的适宜工艺条件为:碳纳米管质量浓度4 g/L,电流密度8 A/dm2,搅拌速率440 r/min,温度40°C,沉积时间40 min。采用扫描电镜和X射线衍射仪对镀层表面形貌和成分进行分析,通过电化学测试比较了不同镀层在不同腐蚀介质中的耐腐蚀性。与纯镍镀层相比,镍–碳纳米管复合镀层的晶粒尺寸更小,表面更粗糙,耐腐蚀性更好。  相似文献   

18.
采用不同浓度的盐酸、FeCl3溶液为腐蚀介质,研究了RE-Ni-W-P-SiC-PTFE复合电镀层于镀态下及经不同温度热处理后的腐蚀速率与阳极极化曲线,并与RE-Ni-W-P-SiC复合电镀层的阳极极化曲线进行了比较.结果显示,RE-Ni-W-P-PT-FE-SiC复合镀层于镀态下或经200、300、400、500℃热处理后,随着盐酸浓度的升高,其腐蚀速率先升高,当盐酸质量分数达到15%时,腐蚀速率达到极大值,进一步提高盐酸浓度,复合镀层的腐蚀速率有所下降;RE-Ni-W-P-PTFE-SiC复合镀层在镀态或200、300、400℃热处理后,随着氯化铁浓度的增加,腐蚀速率先增加,而后有下降的趋势,最后又有所上升,而在500℃热处理温度下,镀层腐蚀速率随FeCl3浓度的增加而一直缓慢增加.阳极极化曲线表明:200℃或500℃热处理后复合镀层具有较好的耐蚀性.  相似文献   

19.
化学镀Ni-P-(CF)n复合镀层的研究   总被引:3,自引:0,他引:3  
许小锋  刘继光 《涂料工业》2004,34(10):11-13
对化学镀Ni-P-(CF)n复合镀层工艺进行了较全面的研究,详细测定和评述了氟化石墨浓度与镀层中(CF)n粒子含量及镀速的关系,以及基础镀液性质和操作条件(如温度、pH值、搅拌方式等)对复合镀的影响。提出了一种具有实用价值的化学镀Ni-P-(CF)n复合镀层工艺技术。与电镀相比,该复合镀层无应力、难以从机体上剥离、硬度高、无磁性、耐热性好。  相似文献   

20.
初步研究了电沉积Ni-W-Al2O3纳米复合镀层的制备工艺。考察了纳米粒子的分散方式、纳米粒子在镀液中的浓度以及镀液温度对沉积速度、复合量及镀层形貌的影响。结果表明:纳米粒子加入镀液前超声分散1h、施镀时对镀液采用超声搅拌效果最佳;纳米粒子在镀液中的含量为15g/L时沉积速率最大,为2.88g/(dm2·h);镀液温度为75~80°C时沉积速率较大且较稳定,且当施镀温度为75°C时镀层表面均匀有光泽,呈银白色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号