首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu2O是目前最有潜力的可见光光催化剂之一,在太阳能电池、一氧化碳氧化、光催化剂、传感器、化学模板等方面有着广泛的应用。然而,Cu2O光生电子-空穴对具有容易复合、易发生光腐蚀、稳定性不好等特性,使其在实际应用上面临很大的挑战,因此如何有效地提高Cu2O的光催化性能成为国内外研究者关注的焦点。首先,本文围绕Cu2O半导体的形貌控制、杂原子掺杂以及构建半导体异质结这三方面对Cu2O光催化性能的提升进行系统阐述,其中构建半导体异质结是提升Cu2O光催化性能最有效的方法,Cu2O与贵金属、金属氧化物以及碳材料构成的复合半导体异质结均有效地提高了Cu2O的光催化活性;其次,从复合半导体异质结、肖特基结以及Z-scheme机制三方面分析并讨论了Cu2O光催化增强机制;最后对Cu2O基纳米复合材料在电子结构、界面性质以及表面负载的成分和厚度等方面的研究进行了展望。  相似文献   

2.
李艳 《山东化工》2023,(2):59-62
采用多元醇法制备不同质量百分比Au/Cu2O催化剂,通过SEM、TEM、XPS等手段对复合材料的理化性质进行表征。在紫外-可见光照射下进行CO2光还原实验研究。光还原实验表明,与纯Cu2O相比,3%Au/Cu2O具有优良的光催化性能。反应4 h后CO产量可达3.5μmol/g,比纯Cu2O的产量高1.4倍。通过对其光学和电化学性能进行测试表明3%Au/Cu2O的各项性能均优于纯Cu2O。这归因于Au/Cu2O催化剂光吸收性能的提高及Au纳米粒子作为助催化剂捕获Cu2O堆积的多余电子从而促进催化剂光生载流子的分离与迁移,使得催化性能大大提高。  相似文献   

3.
宫慧勇  蒋晶晶  刘韶泽  郭永  李作鹏 《化工进展》2015,34(11):3915-3925
回顾了近年来不同形貌Cu2O纳米晶体、Cu2O纳米笼和纳米骨架的合成及最新研究进展,着重介绍了一维Cu2O纳米材料的合成过程,比较了不同形貌Cu2O的制备方法并指出了合成的关键步骤。比较了不同形貌Cu2O晶体的光催化性能,总结指出具有更多高活性{110}晶面或高指数晶面的Cu2O晶体有显著的光催化性能。最后总结了不同形貌Cu2O的控制合成方法,指出Cu2O的可控合成机理研究、非传统多晶面的Cu2O及具有完整晶面Cu2O纳米笼的合成是未来的研究重点;提出Cu2O在光催化领域的主要问题是稳定性较差且光催化效率不高。  相似文献   

4.
采用电沉积法,在AAO模板中成功制备出pn型Cu2O/CdS纳米线阵列。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射分析(XRD)对样品的形貌和结构进行表征,利用光照开路电位测试和光吸收光谱测试对Cu2O/CdS纳米线的性能进行了研究。纳米线的直径约100 nm,与AAO模板孔径相同,XRD结果表明Cu2O/CdS纳米线由立方晶系的Cu2O和立方晶系与六方晶系混合晶系的CdS组成。Cu2O/CdS纳米线的光响应性能增强。在Xe灯照射下Cu2O/CdS纳米线表现出良好的光催化性能,光照7 h后,Cu2O/CdS纳米线对罗丹明B的降解效率达到66.02%。  相似文献   

5.
王宏智  李骏  姚素薇  张卫国 《化工进展》2019,38(12):5442-5448
采用高温水热法和共沉淀法制备了不同摩尔比的pn型Cu2O-WO3复合半导体材料。并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对样品的形貌特征和晶格结构进行表征。表征结果显示,复合材料由立方相的Cu2O和六方相的WO3组成。与纯WO3物质相比,Cu2O-WO3复合半导体材料的紫外吸收边界发生显著红移,在可见光波长范围内的光吸收明显增强,展示出优良的光电流响应性能。以罗丹明B(RhB)溶液的光降解表征材料的光催化性能的过程中,在可见光下光照8h后,相较于WO3和Cu2O仅为22.2%和45.2%的光降解率,摩尔比为1∶2的Cu2O-WO3复合物的降解效率达到了90.6%。  相似文献   

6.
以尿素、硫酸铜、乙酸银为原料,采用溶液法制备了三元复合物Ag/Cu2O/g-C3N4,通过XRD、XPS、SEM、TEM、UV-Vis等手段对三元复合物的结构进行了表征;以罗丹明B为模型研究了三元复合物的光催化降解性能,以大肠杆菌和金黄色葡萄球菌为模型研究了三元复合物的抗菌性能,并探究了三元复合物的光催化降解机理。结果表明,Ag和Cu2O粒子沉积在g-C3N4片层结构上,Ag、Cu2O和g-C3N4三者之间的协同作用使得三元复合物的光催化降解性能和抗菌性能大幅提高。为构建用于实际水体污染处理的g-C3N4基复合材料提供了新思路。  相似文献   

7.
以不同温度焙烧的TiO2为载体,CuCl2·2H2O为铜源,NaOH为沉淀剂,L-抗坏血酸钠为还原剂,采用液相还原-沉积沉淀法制备了Cu2O/TiO2,借助X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、N2-物理吸附、透射电镜(TEM)、X射线光电子能谱(XPS)等手段,研究了TiO2载体焙烧温度对Cu2O/TiO2甲醛乙炔化反应性能的影响。结果表明,低温焙烧得到的TiO2载体以锐钛矿相存在,与Cu2O物种间具有弱的相互作用,使得Cu2O被过度还原为金属Cu,催化活性较低。随着载体焙烧温度的升高,TiO2中出现金红石相,Cu2O与载体间相互作用增强,Cu2O高效转变为乙炔亚铜活性物种,使催化剂表现出最佳的催化性能。  相似文献   

8.
Cu2O是一种典型的p型半导体材料,其带隙宽度约为2.1 eV、太阳能转换的理论效率为18%,在光催化领域,如有机污染物降解、光解水制氢、CO2还原或转化、能量转换和传感等方面有重要应用;此外,由于Cu2O具有无毒、成本低、易合成、含量丰富等优点,因而具有较大的实用价值。近年来,研究人员对Cu2O及Cu2O基复合材料的合成、光催化性能以及影响性能的因素进行了深入广泛的研究。但关于物理性能差异对Cu2O及其复合材料催化性能影响的研究及综述仍然不多,因而对其进行总结讨论具有重要意义。总结并分析了氧化亚铜及其复合材料的比表面积、活性物质负载量、微观形貌、晶型等物理性能对催化性能的影响,以期为各类新型高性能催化材料的理论设计和应用研究提供有益参考。  相似文献   

9.
铜氧化物由于具有理论容量高和储量丰富等优势成为下一代有前景的超级电容器电极材料,但其电子导电性低和长期循环稳定性差制约实际应用。本文以三明治型Cu30Mn70/Cu/Cu30Mn70箔带为母合金,通过脱合金与自蔓延氧化相结合的技术制备了高导电柔性纳米多孔CuMn@多组元氧化物核-壳复合电极,并探究了不同脱合金条件下Mn残余量对电极形貌、结构和电化学性能的影响。实验结果表明,随着腐蚀时间的延长,Mn的残余量会逐渐变少,而不同腐蚀条件下获得的多组元氧化物均由CuO、Cu2O、CuxMn1-xO和CuMn2O4相组成。腐蚀时间为50min时制备的电极(NP-TMO5)在三电极体系测试中具有最优的电化学性能:5mA/cm2电流密度下,面积比电容为1045.7mF/cm2,且循环12000次后,电容保持率为95.9%。两电极对称体系测试中,3mA/cm  相似文献   

10.
采用气流磨处理工业级 Cu2O,可有效减小颗粒粒径和分布范围,得到平均粒径约为 0.98 μm的微纳米 Cu2O;通过抑菌、抑藻、铜离子渗出速率、浅海浸泡等试验探讨了微纳米Cu2O防污性能。结果表明:相对于工业级 Cu2O,微纳米 Cu2O的 24 h抑菌、抑藻率可分别提升约 28.82%和 21.82%,使防污涂料具有更优异的实海综合应用性能和防污性能;相对于纳米级 Cu2O,基于微纳米 Cu2O的防污涂层具有更稳定、可控的铜离子渗出性能,避免了因纳米 Cu2O引起的前期铜离子“暴释”而导致的资源浪费,以及后期铜离子渗出率不足而导致的防污效果欠佳等缺陷。  相似文献   

11.
柯仁挺 《粘接》2022,(3):192-196
针对传统C3N4半导体材料光催化活性和吸收系数都较低的问题,提出用纳米Ag进行改性,并以改性后的Ag-C3N4复合材料为检测基底,制备光电化学传感器,进而分析制备的光电传感器性能。结果表明:掺入Ag后,C3N4半导体材料光催化活性和吸收系数都有所提高;传感器最佳配方:Ag质量分数为3%,偏压0.5 V,四环素适配体浓度1μmol/L,传感器检测限为3.35 nmol/L。表现出良好的稳定性和选择性,能够用于四环素(TET)的定量检测。  相似文献   

12.
室温下通过液相反应合成了Cu2O/C3N4和Cu2O/r-GO(还原石墨烯)两种复合材料。采用XRD、SEM对它们进行物相表征,并分别研究它们在可见光下的光催化降解罗丹明-B性能。与纯Cu2O粉末相比,两种复合光催化剂性能都显著提高,这归功于复合材料中C3N4和/r-GO降低了光生电子和空穴的复合湮灭。Cu2O/r-GO光催化剂中面积较小薄层石墨烯片根植于Cu2O立方体中,起到了转移光生电子的作用。高比表面积C3N4不仅起到了分散作用,可能也作为可见光光催化剂与Cu2O形成异质结。  相似文献   

13.
通过光电化学(PEC)电池将太阳能收集和储存为氢燃料,为未来的能源需求提供了一条清洁和可再生的途径。在多种常用材料中赤铁矿(α-Fe2O3)由于其来源丰富、价格低廉、优异的光稳定性等特点,近几十年来一直是研究热点。对PEC水分解用赤铁矿光阳极的最新进展进行了综述。首先,介绍了掺杂手段提高赤铁矿体相电导率。其次,介绍了负载助催化剂和沉积表面钝化层改善赤铁矿表面反应的有效途径。以及引入中间层促进界面传输3个方面进行了综述。展望了PEC水分解用赤铁矿光电极的发展前景和面临的主要挑战。  相似文献   

14.
王改田  涂江平  赵雪芝 《化工学报》2008,59(5):1278-1282
1~8 nm的Pt微粒通过光催化分解法沉积在20~50 nm的TiO2微粒表面,然后把所制备的TiO2-Pt纳米微粒修饰到富La的贮氢合金电极的表面,形成可助光充电的TiO2-Pt/Mm(Ni3.4Mn0.4Al0.3Co0.7)电极(TPM电极),研究了TPM电极的光电化学、可助光充电行为。结果表明:微小的电流对TPM电极的光充电效应有较强的辅助作用。当TPM电极只被光照时,放出的电量较小;而在光照的同时加上一个微弱的电流,可显著改善其光充电性能。通过交流阻抗谱和循环伏安实验研究了其光充电机理。  相似文献   

15.
采用MOF材料作模板,通过在Cu-BTC材料表面预先负载贵金属Au再热解的方法,成功制备了具有正八面体结构的新型多孔Au/CuxO负载型催化剂。通过降低热解环境中的O2浓度,调节氧化时间,实现了Au/Cu-BTC氧化产物组分的调节,分别制得了Au/Cu2O、Au/Cu2O-CuO、Au/CuO复合催化材料。将其用于CO催化氧化,发现所有Au/CuxO催化剂都表现出比Cu-BTC和Au/Cu-BTC更优异的催化性能,其中由于拥有较高的比表面积、Cu2O含量以及更好的Au的分散性,Au/Cu2O的CO氧化活性最佳,180℃即能实现CO的完全转化。  相似文献   

16.
抗生素是治疗各种传染病的常用药物,但残留在水环境中的抗生素会对生态系统造成威胁。因此,探索去除水环境中抗生素的有效方法具有重要意义。由于光催化臭氧氧化技术可以高效降解和矿化水体中的污染物,该技术受到广泛关注。本工作通过浸渍-化学还原法制备Cu2O/TiO2复合材料并将其作为可见光催化臭氧氧化头孢曲松钠(CRO)的催化剂。利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积分析仪(BET)和紫外-可见漫反射光谱仪(UV-Vis DRS)对Cu2O/TiO2形貌结构和光学性能进行表征,考察了Cu2O/TiO2配比、Cu2O/TiO2投加量、臭氧浓度、头孢曲松钠初始浓度、溶液初始pH值等因素对可见光催化臭氧氧化头孢曲松钠的影响。结果表明,Cu2O对TiO2的掺杂改性使材料孔容和平均孔径增大,能带宽度减小,...  相似文献   

17.
选择低成本、高效、稳定的半导体光电极,是实现经济可行的光电催化转换能源的关键步骤。由于具有相对的光稳定性,Cu基过渡金属三元氧化物因作为p型半导体光电阴极材料而受到关注。其中,CuBi_2O_4作为一种窄带隙的PEC光阴极候选材料受到了广泛的关注。  相似文献   

18.
吴宇欣  吕杰衡  阮健  田晨  刘超  韩建军 《硅酸盐通报》2023,(9):3350-3358+3371
新型Cu2O纳米微晶玻璃具有高Cu载量、低成本和易大规模制备等特点,有望成为载银抗菌玻璃较有潜力的替代者。通过采用XRD、Raman光谱、XPS、FESEM和TEM等表征方法重点研究了不同ZnO/K2O比对SiO2-Al2O3-K2O-ZnO-P2O5-B2O3-CuO微晶玻璃显微结构的影响,并分析讨论了其结构-性能关系。结果表明,微晶玻璃中Zn与P元素会富集在Cu元素所在区域的附近,适量的ZnO能使微晶玻璃中析出的Cu2O晶粒尺寸稳定在纳米级别,并能调节微晶玻璃中Cu元素的浸出速率。Cu2O纳米微晶玻璃对大肠杆菌和金黄色葡萄球菌均具有显著的抗菌效果,并能实现对维多利亚蓝B溶液的可见光催化降解,是一种极具发展潜力的新型功能微晶玻璃材料。  相似文献   

19.
史志海 《粘接》2023,(4):121-124+128
采用水合肼还原法制备了TiO2/Cu2O复合光催化剂,并将其负载在活性炭纤维(ACF)上。利用SEM、XPS、BET和XRD分析了催化剂的性能变化和反应行为。考察了催化剂对NO和SO2的去除效率。结果表明,TiO2/Cu2O改性后ACF的孔径减小。表面官能团包括石墨碳和羰基的增加,提高了活性炭纤维对NO和SO2的吸附能力。在可见光下,当温度为40℃时,TiO2/Cu2O脱硫脱硝效率最高,分别为90%和60%。  相似文献   

20.
利用简单的化学法可制备得到菱形十二面体、立方体和球体不同形貌的氧化亚铜(Cu2O)纳米材料。通过场发射扫描电子显微镜(FE-SEM)和X射线衍射仪(XRD)研究氧化亚铜的形貌尺寸和晶体结构。利用紫外可见漫反射(DRS)计算p型半导体材料的能带间隙。光催化实验结果表明十二面体Cu2O纳米材料的降解率可达91%,其降解速率常数k分别为立方体和球体形貌的14.4倍和2.2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号