首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advanced corrosion resistant aircraft coatings program (ACRAC) is part of the Air Force strategy to improve performance and reduce environmental impact of coatings used on Air Force weapon systems. The program addresses the Air Force near and mid-term strategies to eliminate chromate corrosion inhibitors and reduce steps in the outer mold line coating process. Evaluation of the coating process (surface preparation, conversion coating, primer, topcoat) as a system is a key feature of the ACRAC program. Results to date indicate that the current-state-of-the-art nonchromated coating systems are significantly less effective than those with chromate. A chromate conversion coating is required for the nonchromate primer system to meet minimum requirements. Sol–gel-process based conversion coatings can replace chromate conversion coatings provided a chromated primer is used. Several approaches to incorporating inhibitors into sol–gel coatings are discussed. Electrochemical methods for testing coating performance are discussed and a new procedure based on impedance spectroscopy for evaluating active damage repair is presented.  相似文献   

2.
Nanostructured coatings approach for corrosion protection   总被引:8,自引:0,他引:8  
Nanostructured surface treatment coatings based on the Self-assembled Nanophase Particle (SNAP) approach were investigated as potential replacement for chromate-based surface treatments on aircraft aluminum alloys. In the traditional sol–gel method, hydrolysis-condensation processes are followed by condensation polymerization upon film application. This process sequence provides a low temperature route to the preparation if thin coatings which are readily applied to most metallic substrates. The recent discovery of a method of forming functionalized silica nanoparticles in situ in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin film, is an excellent example of a nanoscience approach to coatings. This Self-assembled Nanophase Particle (SNAP) process can be used to form thin, dense protective organic surface treatment coatings on Al aerospace alloys. The ability to design coating components from the molecular level upward offers tremendous potential for creating multifunctional coatings.

The important components of Al alloy corrosion inhibition by chromate are storage and release of CrVI species, inhibition of cathodic reactions (primarily oxygen reduction), and inhibition of attack at active sites in the alloy. Unlike chromate-based treatments, current SNAP coatings provide barrier-type corrosion resistance but do not have the ability to leach corrosion inhibitors upon coating damage and minimize corrosion of the unprotected area. In this study, organic inhibitors were tested for corrosion protection of aluminum alloys in combination with the (SNAP). Scanning Vibrating Electrode Technique, anodic polarization, electrochemical impedance spectroscopy, and salt spray test were used to study this new approach for chromate replacement.  相似文献   


3.
There has been much R&D effort expended to develop pretreatments and coatings that allow the replacement of toxic, carcinogenic, mutagenic, environmentally hazardous chromates used as pretreatments and pigments in aircraft coating systems. There have been many claims for chromate replacement in primer and pretreatment systems for aircraft, but no systems presently are in use that can function and meet specifications without some form of chromate used in the pretreatment and/or primer. The Mg-rich primer technology developed at North Dakota State University and now in final commercial development at AKZO Nobel Aerospace Coatings shows that finally aerospace Al alloys can be protected against corrosion. With simple cleaning only or a non-chromate pretreatment, the Mg-rich primer (MgRP) + aerospace topcoat provides an aircraft protection system that give corrosion protection that equals or exceeds any system using chromate in any form. About 18 peer reviewed papers have been published and at least twice that many presentations at technical meetings describing this new aircraft primer technology. There are an extensive number of samples in outdoor exposure, and in exposure on small parts of aircraft like port-hole covers and doors, and the coating system has been in accelerated exposure cabinets of all sorts. In the first versions of the magnesium primer premature blistering was noted during immersion or B117 continuous salt spray testing which may be due to hydrogen generation from water contact at a particle. Efforts to control the level of activity of the magnesium have been successfully accomplished since the testing reported in this paper which controls this phenomenon. Current formulations meet and exceed the ASTM B117 test results of full chromate primer systems. Open circuit potential (OCP) measurements indicate an extended period of cathodic protection of the Al aircraft alloys such as AA 2024 T-3 and AA 7075 T-6. After this stage of protection, a combination of Mg oxide, hydroxide and carbonate compounds seem to give protection to the system, as we have seen corrosion protection given to samples for greater than 10,000 h of cyclic exposure for Mg-rich primers with good aerospace topcoats. Preliminary data are presented for other Mg alloys as pigments in metal-rich coating systems. All data indicates that the Mg-rich (or Mg-alloy pigment-rich) primer + aircraft topcoat system gives excellent corrosion protection by mechanisms entirely different from the modes of protection for aircraft alloys given by the toxic, carcinogenic chromate compounds now in use in all corrosion protection systems for aircraft. In most cases thus far examined, the protection, especially in cyclic exposure, exceeds the present chromate-based systems.  相似文献   

4.
Current accelerated testing of aircraft coating systems for corrosion protection relies heavily on salt spray methods. Electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and electrochemical noise methods (ENM) provide insight into the global properties of a coating system, and both techniques are being used on a limited basis. However, there is a need to investigate corrosion events with greater spatial resolution under coatings at the metal/coating interface. Such corrosion activity may be related to coating defects and variations in the surface chemistry of the underlying metal.

The scanning vibrating electrode technique (SVET) has been developed to allow high spatial resolution investigation of localized corrosion activity that may be associated with coating defects or galvanic coupled regions of the metal surface. The SVET offers high resolution in current measurements of the order of 0.5 μA/cm2 and is able to detect in-situ initiation and progress of corrosion activity under a protective coating. Using the SVET, minute variations in d.c. current associated with localized corrosion activity are detected and used to map both anodic and cathodic corrosion activities in a localized area. The difference in initial corrosion activity under various coatings can be correlated to the performance life of the coatings. The application of SVET to aircraft coatings and corrosion is reported to demonstrate the utility of this important new electrochemical tool.

In the current study, the SVET was used to discriminate the corrosion protection performance of selected sol–gel based coating systems. Sol–gel based surface treatments are being developed as part of an environmentally compliant coating system alternative to the currently used chromate-based systems. The SVET results are compared with data obtained from chromium inhibition coating systems. The SVET analyses are compared with electrochemical impedance measurements. The comparison of such data will provide the basis to adopt SVET measurements as an early performance discriminator for newly developed coating systems.  相似文献   


5.
In the corrosion protection of aluminum-skinned aircraft, surface pretreatment and cleaning are critical steps in protecting aerospace alloys from corrosion. Our recent discovery of a revolutionary new method of forming functionalized silica nanoparticles in situ in an aqueous-based sol–gel process, and then crosslinking the nanoparticles to form a thin film, is an excellent example of a nanoscience approach to coatings. This coating method is called the self-assembled nanophase particle (SNAP) process.

The SNAP coating process consists of three stages: (1) sol–gel processing; (2) SNAP solution mixing; (3) SNAP coating application and cure. Here, we report on key parameters in the ‘sol–gel processing’ and the ‘coating application and cure’ stages in the GPTMS/TMOS system. The SNAP process is discussed from the formation of the nanosized macromolecules to the coating application and curing process.

The ‘sol–gel processing’ stage involves hydrolysis and condensation reactions and is controlled by the solution pH and water content. Here, the molar ratio of water to hydrolysable silane is a key factor. SNAP solutions have been investigated by NMR, IR, light scattering, and GPC to identify molecular condensation structures formed as a function of aging time in the solution. In moderate pH and high water content solutions, hydrolysis occurs rapidly and condensation kinetic conditions are optimized to generate nanophase siloxane macromolecules.

In the ‘SNAP solution mixing’ stage, crosslinking agents and additives are added to the solution, which is then applied to a substrate by dip-coating to form the SNAP coating. The chemical structure and morphology of the films have been characterized using X-ray diffraction (XRD), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). SNAP films are amorphous but exhibit nanostructured assembly of siloxane oligomers at a separation of about 1.8 nm as well as molecular level ordering of O–Si–O species. The surface analytical data indicate that the films retain the basic chemical arrangement of the siloxane macromolecules/oligomers and crosslinking process creates a network of siloxane oligomers tethered together. Results of these analyses are then used to construct a model of the SNAP coating. Results of these analyses are discussed in detail.  相似文献   


6.
Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates   总被引:18,自引:0,他引:18  
A series of water-based stable sol–gel systems have been developed. Various functional groups including amino, epoxy, vinyl, and allyl groups can be incorporated into the sol–gel network to interact with organic polymer resins. The solid content of these sol–gel-based coating formulations varies from 2.5 to 45%. The sol–gel coating of alumina–silica networks derived from low solid content solutions (2.5%) has been developed and evaluated to replace the current conversion coating pretreatment process. Sol–gel coatings derived from the high solid content solutions (17–45%) have shown excellent mechanic strength, good adhesion, and provide corrosion protection of the aluminum substrate when cured at elevated temperatures. Sol–gel/epoxy resin hybrid coatings have been formulated and studied. The hybrid coating showed enhanced mechanical strength such as hardness and abrasion resistance. When cured at elevated temperatures (80°C), all of the hybrid coatings studied passed wet adhesion testing. Some of the hybrid coatings pass wet adhesion testing when cured at room temperature. However, water-sensitivity remains for most of the room temperature cured hybrid coatings.  相似文献   

7.
The development of environmentally friendly process for pretreatments of metallic substrates is a field of growing research due to the ban against chromates used as protective pretreatments. Among the possible candidates for environmentally friendly pretreatments of aluminum alloys are the silica-based sol–gel coatings. Such coatings are able to form an Si–O–Al conversion layer providing a stable alumina/sol–gel film interface, which inhibits the onset of corrosion. Sol–gel technology offers a wide range of chemical mechanisms and exhibits high potential substitutes for the environmentally unfriendly chromate metal-surface pretreatment. Sol–gel derived organo-silicate hybrid coatings, preloaded with organic corrosion inhibitors, have been developed to provide active corrosion protection when integrity of the coating is compromised. The incorporation of organic corrosion inhibitors into hybrid coatings has been achieved as a result of physical entrapment of the inhibitor within the coating material at the stage of film formation and cross-linking. Sol–gel derived coatings, especially the hybrid films, provide a dense barrier against electrolyte uptake, and offer a wide range of applications as corrosion protective, hydrophilic coatings, hydrophobic anti-reflective coatings, migration barriers against liquid and volatile compounds, antibacterial modification of textiles and water-repellent antistatic textiles. In this paper, the novel applications of the sol–gel derived coatings are presented and discussed.  相似文献   

8.
Electrochemical impedance spectroscopy provides a quantitative evaluation of the protection afforded by coatings on metals. Two constraints are that the coating is under immersion and that the substrate acts as the working electrode with the counter and reference electrodes located in the electrolyte. The use of embedded electrodes placed between a topcoat and primer can relax these constraints and make EIS monitoring more applicable to coatings in the field. A two-electrode, non-substrate configuration involves two embedded electrodes on a coated panel acting as the working and counter/reference electrodes. This configuration has been used to characterize the interlayer between a topcoat and primer under the assumption that the current passed through the interlayer. Simulated results have been presented where current passage for a non-substrate configuration was through the metal substrate. The results associated with a urethane topcoat/epoxy primer system and an alkyd topcoat/alkyd primer system are presented to demonstrate the feasibility of monitoring the substrate where the substrate is not an electrode. The degradations of the coatings were induced using the ac–dc–ac accelerated test where the immersed coatings were subjected to cycles that involved a dc cathodic potential condition that promoted the cathodic reactions at the metal/coating interface.  相似文献   

9.
Design, development and scale-up of environmentally friendly coatings are very important in order to replace chromate based coatings for aluminium alloys. Barrier properties, paint adhesion and possibly self-healing ability are relevant aspects for replacement of chromate-based pre-treatments. Sol–gel materials are candidates for use in protective coating applications, as it is possible to form highly adherent and chemically inert oxide films on metal substrates.  相似文献   

10.
Inorganic/organic hybrid coatings were prepared using epoxidized linseed oil with combinations of the two sol–gel precursors (titanium(IV) isopropoxide, tetraethyl orthosilicate), and a telechelic silicate based on a modified oligomeric caprolactone. The coatings were UV-cured with sulfonium initiators which concomitantly cured the epoxy functional organic phase and the sol–gel inorganic phase to form a co-continuous inorganic/organic system. A ternary experimental design was employed to elucidate the influence of inorganic modifier on the mechanical properties of the inorganic/organic hybrid coatings. Small angle X-ray scattering (SAXS) was used to evaluate radius of gyration of the metal-oxo-cluster. Various coating properties, such as hardness, impact resistance, adhesion, solvent resistance, and surface energy were investigated as a function of sol–gel precursors. Inorganic/organic hybrid coatings containing both tetraethyl orthosilicate and the modified caprolactone resulted in improved hardness and solvent resistance with no loss of impact strength. The inclusion of titanium(IV) isopropoxide in to the systems resulted in a systematic reduction in the coatings properties. This was attributed to inhibition of the organic crosslinking process as a consequence of absorption of ultraviolet light by the titanium-oxo-clusters.  相似文献   

11.
Chromate conversion coatings (CCCs) have been applied to aluminum substrates for many years to improve corrosion resistance and paint adhesion. In recent years the so-called sol–gel chemistry based coating systems have been examined as possible replacements for CCCs on aluminum. A mechanism is proposed for the formation of CCC on aluminum that is consistent with sol–gel chemistry principles. The conclusions illustrate important considerations for developing non-CCCs for aluminum.  相似文献   

12.
李玮  曹京宜  熊金平  左禹 《化工学报》2007,58(10):2543-2547
采用环氧富锌作为底漆、氯化橡胶作为面漆,研究了涂层体系腐蚀过程中电化学阻抗谱(EIS)的变化。结果表明,腐蚀初期环氧富锌/氯化橡胶涂层体系中底漆的厚度比例与涂层的防护性能无关,而在腐蚀中后期,随底漆厚度比例适当增大,涂层自修复能力增强,离子等腐蚀介质在涂层中的传输速度得到显著延缓,涂层吸水率和孔隙率明显降低,涂层防护性能出现短时间升高。当环氧富锌底漆为涂层总厚度的2/3左右时,涂层体系的防护性能最好,而仅有底漆或面漆的体系则不具备良好的防护性能。  相似文献   

13.
Challenges of chromate inhibitor pigments replacement in organic coatings   总被引:7,自引:0,他引:7  
General considerations concerning pigment grade corrosion inhibitors are presented and new characteristic functional parameters proposed. The chemistry, contemporarily practiced for corrosion inhibitor pigment synthesis, as well as known mechanistic considerations relevant to the corrosion inhibitor species available in pigment grades, are reviewed. Inherent limits of chemistry are outlined regarding the feasibility of developing equally effective and versatile non-toxic alternatives for chromates.

Fundamental aspects of corrosion inhibitor pigment behavior are discussed in the context of organic coatings degradation mechanisms. Disclosed experimental data demonstrate that correlation exists between solubility of corrosion inhibitor pigments, leaching from, and osmotic blistering of organic coatings. A mathematical expression is proposed and empirically proven to adequately describe the leaching rate of corrosion inhibitor pigments from organic coatings.

The barrier function of some high performance organic coatings, such as aircraft or coil, is negligible and requires the contribution of an effective corrosion inhibitor pigment, which, typically, is strontium chromate. In this context, the feasibility of replacing chromate inhibitor pigments is assessed and the “gap” observable between the inhibitor performance of chromates and traditional non-chromate pigments is noted.

Experimental data are displayed regarding the corrosion inhibitor performance of a novel, organic–inorganic, hybrid type corrosion inhibitor pigment in typical aircraft primer application on aluminum and plated steel. The presented data demonstrate the feasibility of chromate replacement in this specific case.  相似文献   


14.
While the development and application for transparent protective coatings for metals continues and broadens, the use of these coatings on high-value outdoor bronze objects, such as statues and architectural elements, requires extensive testing before use. Recent efforts in coatings technology have produced high-performance water-borne latex dispersions containing polyacrylics and poly(vinylidene fluoride) (PVDF) targeting extended coating lifetimes and improved UV resistance. Our studies show that a two-layer polymer film with a solvent based primer (Paraloid™ B-44) and a high performance water-borne topcoat (Kynar Aquatec™ RC-10206) exhibits high impedance as measured by electrochemical impedance spectroscopy. Upon annealing, those films further increased in impedance, suggesting improved corrosion protection compared to unannealed films. When soaking in water, films that contained high loading levels of coalescing agent (Dipropylene glycol monomethyl ether, DPM) in the topcoat formulation resulted in a visible whitening of the basecoat and a decrease in coating resistance. Characterization of the whitened layer by FT-IR indicated the presence of coalescent in the basecoat, suggesting that coalescent migrated from the topcoat into the primer basecoat. Annealing studies were performed to reduce uptake and reverse or inhibit water whitening.  相似文献   

15.
Inorganic/organic hybrid conversion surface coatings for long-term protection of aluminum alloys against atmospheric corrosion have been developed based on a unique self-assembled nanophase particle (SNAP) coating process. Nano-particles with peripheral epoxy functional groups are pre-formed in an aqueous sol–gel process and then assembled and crosslinked upon application on the substrate surface. Mono-, di-, and tri-functional amino-silanes have been used as crosslinking agents. Corrosion resistance properties of these hybrid nanocomposite coatings studied by a variety of electrochemical testing methods including electrochemical impedance spectroscopy, scanning vibrating electrode technique, and potentiodynamic scan method, indicate excellent barrier protection performance of the coatings. For comparison, coatings crosslinked with amino-silanes offer significant improvement in coating performance over the previously described SNAP formulations with a conventional amine crosslinker—diethylenetriamine.  相似文献   

16.
Characterization of the metal–coating interface is crucial to the understanding and prediction of the performance of corrosion protective coatings. To date, such characterization has been incomplete and performed on a scale of measurement that gives little microscopic-scale information. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have the ability to provide such information. We present in this work the use of such methods to examine the interface between steel and marine coatings and to image the surface of untreated aircraft aluminum alloys. We have also imaged these aircraft alloys after chromate/phosphate pretreatment. AFM and SEM have also been used to investigate the changes in surface morphology, which accompany changes in the samples due to exposure. Electrochemical noise methods, electrochemical impedance spectroscopy measurements, and ProhesionTM testing were performed in parallel with the AFM/SEM measurements. The results, along with implications for aircraft coatings, are discussed.  相似文献   

17.
The sol–gel method is being investigated as an environmentally compliant alternative for chromate-based conversion coatings currently in use. An overview of recent advances in the use of sol–gel derived coatings for improved corrosion resistance of aluminum and steel metal surfaces is given.  相似文献   

18.
There is an increased need to develop environmentally benign (no pollution or release of hazardous materials into the air, water or soil from a coating or adhesive either during their manufacture, use and disposal or recycle lifetimes), coatings and adhesives that have equivalent or superior properties to their conventional (non-environmentally benign) counterparts. This paper discusses some of the new concepts or technologies associated with environmentally benign barrier coatings for packaging, abrasion resistant coatings for plastic substrates, new developments in wood finishes, antifouling coatings and new chemistry associated with the design of advanced coating systems. This paper also discusses how Battelle is helping the US Air Force to eliminate hazardous waste associated with structural adhesive technology through the identification of equivalent adhesive systems reducing the number of adhesives used to repair current aircraft and missile equipment. This paper also discusses advances in the area of repulpable/recyclable pressure sensitive adhesives and silicone release coatings used in a variety of commercial applications.  相似文献   

19.
In the thrust of pursuing new environmentally friendly technology for automotive application, a new corrosion protection coating system for automotive steel has been developed through interface engineering affected by an energetic plasma process. The plasma treated coating system outperformed the current phosphated galvanized steel system in scab corrosion tests. In the plasma process, the steel substrate was subjected to plasma cleaning and in situ plasma polymerization deposition. Plasma of a mixture of argon and hydrogen was created to remove the surface contaminants and the inherent oxide layer. A very thin film (50–100 nm) was then deposited by a plasma generated from alkylsilanes (e.g. trimethylsilane (TMS)). The interface can be so designed that strong corrosion-resistant interfacial bonds such as Fe–Si, Fe–C, and Si–C can be obtained. The interfacial chemistry involved in the plasma process and corrosion reaction are characterized by reflection absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), and sputter neutral mass spectroscopy (SNMS).  相似文献   

20.
为了解决聚丙烯材料上水性涂料附着力较差的技术难题,首先合成一种丙烯酸酯单体改性水性氯化聚丙烯树脂,采用该树脂制备聚丙烯塑料水性底漆,并研制配套的水性面漆和罩光清漆,制备得到成套水性复合涂层体系。使用傅里叶变换红外光谱仪(FT-IR)、动态光散射(DLS)、凝胶渗透色谱(GPC)和差示扫描量热法(DSC)对所制备丙烯酸改性水性氯化聚丙烯树脂进行结构表征。重点考察了水性底漆的附着力、复合涂层的附着力以及复合涂层的耐热水煮性能,结果表明:水性底漆和复合涂层均表现出优异的附着力,涂层耐热水煮性能较好。最后,对水性复合涂层的性能进行测试,结果表明:复合涂层综合性能优异,在汽车内外饰及各类聚丙烯材料领域具有较大的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号