首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
通过固相法制备出钛酸锂(LTO)样品,再将LTO和氧化石墨烯通过水热法制得钛酸锂/还原石墨烯复合材料(LTO-RGO)。通过XRD、SEM、TEM对材料的结构、形貌进行表征,并进行充放电性能测试、交流阻抗测试来检测其电化学性能。结果表明,石墨烯对钛酸锂进行包覆处理不影响钛酸锂材料的晶型结构、无杂相出现。钛酸锂/石墨烯复合材料表现出了比钛酸锂材料更为优异的电化学性能,0.2C倍率下的放电比容量为208.7mA·h/g,50次循环后容量保持率为98.10%;20C倍率下的放电比容量为136.1mA·h/g。  相似文献   

2.
以Li2CO3、锐钛矿TiO2和石墨烯为原料,采用固相球磨及喷雾干燥相结合的方法制备钛酸锂和钛酸锂/石墨烯复合负极材料。用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)表征了样品的晶体结构及形貌。通过恒流充放电测试样品的电化学性能,考察不同石墨烯添加量对钛酸锂材料电化学性能的影响。当石墨烯添加量质量分数为1%时,钛酸锂/石墨烯复合负极材料(LTO-G-2)具有优异的倍率性能及循环稳定性。在0.2C、0.5C、1C、3C、5C和10C倍率下的充电比容量为172.9mA·h/g、165.7mA·h/g、163.5mA·h/g、157.4mA·h/g、154.0mA·h/g和143.5mA·h/g。5C倍率下经历200次循环,容量保持率为94.8%。循环伏安测试(CV)表明LTO-G-2样品的极化程度是最小的。交流阻抗测试(EIS)结果显示LTO-G-2的电荷转移阻抗(69.6Ω)小于纯的钛酸锂的电荷转移阻抗(140.5Ω)。  相似文献   

3.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   

4.
采用高能球磨法制备了纳米硅/石墨烯(Si@G)复合锂离子电池负极材料,并研究了高能球磨时间对Si@G复合材料成分和电化学性能的影响。X射线衍射分析结果表明:球磨40 min后,产物中出现少量电化学惰性的碳化硅。球磨20 min的Si@G复合材料具有最高的首次放电比容量(3 418 mA?h/g)和首次Coulomb效率(89%),但其充放电循环稳定性较差,放电比容量在33次充放电后即衰减为首次的80%。而球磨40 min的Si@G复合材料,充放电84次后,其容量保持率仍为80%。表明没有储锂容量的杂质相SiC虽然导致Si@G负极材料的首次充放电比容量下降,但有利于提高充放电循环稳定性。  相似文献   

5.
王珏  于平  付东  张晓臣  张伟君  阚侃 《精细化工》2020,37(2):257-263,289
以氧化石墨烯和Sn Cl2为原料,通过微波水热法合成了石墨烯/SnO_2复合材料(GS),以过硫酸铵为引发剂,通过吡咯在Si粉表面原位氧化聚合制备了Si@PPy(SP)包覆结构,最后通过微波水热组装法制备了石墨烯/SnO_2/Si@PPy复合材料(GSSP)。采用SEM、TEM、XRD、Raman和BET对GS、SP和GSSP材料的形貌和结构进行表征,并以GSSP复合材料为负极组装半电池进行倍率、循环、CV和EIS等电化学性能测试。结果表明,GSSP复合材料具有优异的倍率性能,在100 mA/g电流密度下,放电和充电的平均比容量分别为948.44和869.63 mA·h/g。1000 mA/g电流密度下,经过400次循环放电和充电的比容量保持率高达90.69%和89.34%。  相似文献   

6.
以氧化石墨烯和SnCl2为原料,通过微波水热法合成了石墨烯/SnO2复合材料(GS),以过硫酸铵为引发剂,通过吡咯在Si粉表面原位氧化聚合制备了Si@PPy包覆结构(SP),最后通过微波水热组装法制备了石墨烯/SnO2/Si@PPy复合材料(GSSP)。采用SEM、TEM、XRD、Raman和BET对GS、SP和GSSP材料的形貌和结构进行表征,并以GSSP复合材料为负极组装半电池进行倍率、循环、CV和EIS等电化学性能测试。结果表明:GSSP复合材料具有优异的倍率性能,在100 mA/g电流密度下,放电和充电的平均比容量分别为948.44和869.63 mAh/g。1000 mA/g电流密度下,经过400次循环放电和充电的比容量保持率高达90.69%和89.34%。  相似文献   

7.
研究了铜掺杂碳包覆磷酸铁锂(LiFePO4)的微波合成。通过X射线衍射(XRD)表征了样品的化学组成和晶体结构,通过扫描电镜(SEM)考察了样品的微观形貌。分别用铜掺杂磷酸铁锂、碳包覆磷酸铁锂、铜掺杂碳包覆磷酸铁锂作为锂离子电池正极材料,进行了电化学性能测试比较。充放电测试表明,微波合成的铜掺杂碳包覆磷酸铁锂具有良好的充放电性能和循环寿命,首次放电比容量达到145 mA•h/g,循环30次后比容量仍然有143.5 mA•h/g,为初始容量的98.96%,容量几乎无衰减。  相似文献   

8.
通过溶胶–凝胶法与热处理相结合的方法合成了锂离子电池核壳结构Si/SiO_x纳米复合负极材料,采用X射线衍射、扫描电镜、透射电镜、红外光谱分析了复合材料的结构,采用恒流充放电和电化学工作站测试材料的电化学性能。结果表明:纳米Si粒子表面被SiO_x包覆,形成了具有核壳结构的Si/SiO_x纳米复合材料。其中纳米Si粒子粒度为80~100nm,SiO_x厚度为15~19nm。合成Si/SiO_x纳米复合材料的首次放电容量达1093mA·h/g,经过100次循环后容量仍超过430mA·h/g,表现出良好的循环性能。  相似文献   

9.
采用水热反应和高温固相反应方法合成了Fe@Fe_2O_3/石墨烯复合材料。运用扫描电子显微镜(SEM)、X射线衍射(XRD)、光电子能谱仪(XPS)和透射电镜(TEM)对复合材料进行了物理表征。结果表明,Fe@Fe_2O_3/石墨烯复合材料中纳米颗粒均匀分布在石墨烯中,且纳米颗粒具有核壳结构,提出了核壳结构的形成机理。充放电测试结果显示,Fe@Fe_2O_3/GNS复合材料在100mA/g下经过90次循环后,可逆容量仍有959.3 mA·h/g,库伦效率保持在86.4%。此外,在5000 mA/g电流充放电条件下,Fe@Fe_2O_3/GNS复合材料循环280次后,可逆容量维持在515 mA·h/g,表现出较好的大电流充放电循环寿命。  相似文献   

10.
通过粉末X射线衍射、热重、差示扫描量热与扫描电子显微镜考察了6种改性钛酸锂材料的微观结构特征,并组装成扣式电池考察它们作为锂离子电池与钠离子电池负极材料时的电化学特征。结果表明:作为锂离子电池负极材料,无定形碳和碳纳米管包覆钛酸锂具有更高的可逆容量、优异的循环性能和良好的倍率性能;而作为钠离子电池负极材料,纳米化钛酸锂材料具有更好的储钠性能;一次粒子小于100 nm的钛酸锂材料,以0.1C充放电时可逆容量为155 m A·h/g,以0.2C放电、10C充电时,容量仍保持在118 m A·h/g。  相似文献   

11.
以玉米淀粉为碳源,锡酸钠为锡源,通过碳热还原的方法制备了Sn/C复合材料。采用XRD,SEM,TEM等手段对材料的结构和形貌进行表征。结果表明,以玉米淀粉为碳源,锡酸钠为锡源制备的Sn/C复合材料碳基体能对金属锡形成很好的分散和包覆,在结构上具有良好的稳定性;600℃处理得到的样品具有最佳的比容量和循环性能,其首次脱锂比容量为583 mA.h/g,循环10次后其充放电效率达95%。  相似文献   

12.
通过静电自组装技术成功制备得到柔性自支撑聚二烯二甲基氯化铵-Si/石墨烯(PDDA-Si/G)纳米复合薄膜。该复合薄膜无添加黏结剂及导电炭黑且仍能保持电极结构的完整性,其中石墨烯提供完整的导电网络和机械韧性。电化学测试结果表明,当电流密度为0.2 A/g,复合材料的比容量可达1439.9 (mA·h)/g,库仑效率保持98%以上。且在高电流密度(2 A/g)下,复合材料的比容量仍可维持在499.9 (mA·h)/g,远高于商品化纯Si电极的电化学性能。  相似文献   

13.
用碳热还原法制备了锡-石墨复合材料,通过XRD及SEM、恒流充放电循环、慢速扫描循环伏安和电化学阻抗测试等方法对其电化学嵌脱锂性能进行了研究. 结果表明,SnO2被石墨还原成金属Sn圆球颗粒,球粒平均尺寸4 mm,均匀分散,部分附着在片状石墨上. 该材料的首次嵌、脱锂比容量分别可以达到887和615 mA×h/g,库仑效率为69%,循环15次后的脱锂比容量为387 mA×h/g,高于石墨,容量保持率为63%,平均容量损失率为2.5%/次.  相似文献   

14.
任丽  成国祥  朱嫦娥  王立新 《精细化工》2005,22(2):88-90,141
以聚吡咯 /二氧化硅 (炭黑 )〔PPy/SiO2 (C)〕复合材料作正极 ,组装成锂 /聚吡咯二次电池。探讨了不同掺杂材料、充放电电流对该电池性能的影响。结果表明 ,复合材料电导率越高、充放电电流越小 ,电池容量越高 ,循环性能越好 ;其中PPy/APS SiO2 电导率最高为 3 3 3S/cm ,当充放电电流为 0 1mA时 ,电极最大放电比容量达到41 89mA·h/g ,经 3 0个充放电循环后 ,充放电效率仍为 98 2 %。通过元素分析和SEM研究了经充、放电后正极材料的组成和形态结构的变化 ,验证了锂 /聚吡咯二次电池的工作原理 ,是靠阴离子掺杂和脱掺杂进行的  相似文献   

15.
《Ceramics International》2019,45(12):14829-14841
In the present work, a new class of anode material for high energy applications of Li-ion battery is prepared by easy and large-scale producible process. Herein, the nanocomposite of MnO and reduced graphene oxide (rGO) is prepared by anchoring MnO nanoparticles into 3D matrix of rGO hydrogel followed by annealing process. The composite which has homogeneous distribution of MnO particles on conducting rGO layers demonstrated superior electrochemical performance such as high reversible capacity, stable cycle life and better rate capability. It has shown initial discharge capacity of 2358 mAh g−1 and retained 570 mAh g−1 after 100 cycles as compared to pristine MnO which shown initial discharge capacity of 820 mAh g−1 and retained only 45 mAh g−1 after 100 cycles. The retained capacity of new MnO/rGO anode is much higher than the theoretical capacity of conventional graphite anode. Moreover, the MnO/rGO nanocomposite shows six times higher Li+ ion diffusion of 4.18 × 10−12 cm2 s−1 as compared to 6.84 × 10−13 cm2 s−1 of MnO. In addition, the study provides insight of charge-discharge process, which conducted in initial, discharge and charge states of pristine MnO and MnO/rGO composite using ex-situ X-ray diffraction and X-ray photon spectroscopy techniques.  相似文献   

16.
Copper silicide-coated graphite as an anode material was prepared by the sequential employments of plasma enhanced chemical vapor deposition (PECVD) and radio frequency magnetron sputtering (RFMS) method at 300 °C. The silicon-coated graphite exhibited an initial discharge capacity of 540 mAh/g with 76% coulomb efficiency, and the discharge capacity was sharply decreased down to 50% of initial capacity after 30 cycles, probably due to large volume changes during the charge-discharge cycling. Copper silicide-coated graphite, however, exhibited an initial discharge capacity of 480 mAh/g with higher retention capacity of 87% even after 30 cycles, probably due to the enhanced interfacial conductivity. The copper silicide film on the graphite surface played as the active anode material of lithium secondary batteries via the reduction of interfacial resistance and mitigation of volume changes during repeated cycles.  相似文献   

17.
H_2Ti_(12)O_(25),作为一种新型高压负极材料,由于其循环性能好、能量密度高而逐渐引起人们的注意。本文利用湿法对负极材料H_2Ti_(12)O_(25)进行了石墨烯包覆。结果表明,石墨烯包覆能够有效的降低H_2Ti_(12)O_(25)电荷转移电阻,提高其锂离子扩散速率。H_2Ti_(12)O_(25)/graphene在1 C下的首次充电(脱锂)容量为181.6 mA·h·g~(-1)(1 C=200 m A·g-1),容量保持率为92.3%,而未包覆的H_2Ti_(12)O_(25)首次充电容量为168.5 mA·h·g~(-1),容量保持率仅为90.2%。此外,H_2Ti_(12)O_(25)/G3也表现出较好的倍率性能。  相似文献   

18.
We report a microwave-assisted synthesis of a self-assembled three-dimensional graphene-carbon nanotube-nickel (3D G-CNT-Ni) nanostructure, which can be used as a high capacity anode material in lithium-ion batteries (LIBs). The unique 3D G-CNT-Ni nanostructure shows that CNTs are grown on graphene sheets through tip growth mechanism by Ni nano-particles. Bunches of CNTs and graphene sheets produce 3D network nanostructures with ultrahigh surface area, a large number of activation sites, and efficient ion pathways, all of which are crucial for high capacity anode materials in LIBs. The synthesized 3D nanostructure maintains a reversible specific capacity of 648.2 mA h/g after 50 cycles at a current density of 100 mA/g, as high capacity electrode structures in LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号