首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以硅酸和偏铝酸钠为硅源和铝源制备硅铝胶,采用气相法合成MCM-22分子筛.考察了硅铝比、钠离子含量、模板剂六亚甲基亚胺(HMI)和水用量等工艺条件对合成的影响.结果发现,与水热晶化法相比,气相法合成中硅铝比范围变窄,所需Na 含量大大降低,合成的MCM-22分子筛结晶更完整,晶粒直径较大.原料组成为SiO2:(0.02~0.033)Al2O3:(0.085~0.1)Na :1.2HMI:20H2O,晶化温度和时间分别为150 ℃和5~7 d的实验合成条件较为适宜.  相似文献   

2.
采用微波辅助的方法,以拟薄水铝石、硅溶胶等为原料,合成出纯相SAPO-11分子筛,大大减少了晶化时间,节约了合成成本。通过X射线衍射(XRD),扫描电子显微镜(SEM)对合成的样品进行表征,详细考察了硅源、模板剂、硅铝比及晶化条件(晶化时间、晶化温度、pH)对合成的影响。结果表明,pH及晶化时间的影响较为显著,以硅溶胶为硅源,以二正丙胺为模板剂,在n(SiO2)∶n(Al2O3)=0.6、pH=5.7、晶化温度为185 ℃、晶化时间为10 h的条件下,采用微波辅助可以高效地合成纯相的SAPO-11分子筛。  相似文献   

3.
采用动态晶化法,系统考察了硅源、硅铝比、模板剂含量以及水含量对ZSM-12分子筛合成的影响,得到合成纯相ZSM-12分子筛的最佳条件为:硅溶胶为硅源,n(Si)/n(Al)=45~70,n(四乙基氢氧化铵,TEAOH)/n(SiO_2)=0.14,n(H2O)/n(SiO_2)=13。通过XRD、SEM、BET、NH3-TPD对所合成的产物进行了表征。体系中的硅铝比对所合成产物的晶相和晶化动力学有显著影响:当硅铝比(Si/Al摩尔比,下同)过低时,容易导致MFI和BEA结构的杂晶相的生成;硅铝比较高时,动态晶化比静态晶化更有利于提高分子筛的合成效率;体系中的n(TEAOH)/n(SiO_2)和n(H_2O)/n(SiO_2)会在很大程度上影响所合成产物的晶相和形貌。  相似文献   

4.
以蜂窝状堇青石为载体,采用原位水热合成法制备了ZSM-5/堇青石整体式催化剂。考察了四丙基氢氧化铵(TPAOH)含量、水硅摩尔比和晶化温度等对ZSM-5分子筛在堇青石载体上负载量的影响。结果表明:模板剂TPAOH的含量对负载量有显著影响,当摩尔比n(TPAOH)/n(SiO2)≤0.2时,改变晶化温度和水硅摩尔比均可获得较佳的分子筛负载量;当n(TPAOH)/n(Si O2)0.2时,较高的碱度导致前驱体溶胶的溶解,使分子筛多在溶液中晶化,显著减小分子筛在堇青石载体上的负载量。当n(TPAOH)/n(Si O2)≤0.2时,水硅比减小,ZSM-5分子筛负载量逐渐增大,最大负载量可达42.8%。晶化温度降低,分子筛的负载量和晶粒均减小。整体式催化剂用于NO的催化氧化活性研究表明,堇青石载体上分子筛的负载量越高,整体式催化剂的比表面积越大,催化活性越好。  相似文献   

5.
考察了晶化时间、模板剂用量、投料硅铝比、水硅比等条件对纳米Beta沸石的影响.结果表明:采用四乙基溴化铵(TEA)为模板剂,在晶化温度160℃,晶化时间45 h,TEA与SiO2物质的量之比0.25,SiO2与Al2O3物质的量之比25,水硅物质的量之比16的条件下,合成的Beta沸石的晶粒尺寸为20 nm左右,且具有较大的比表面积.放大合成的Beta沸石也具有纳米粒子特征,引入絮凝剂可以提高纳米沸石的回收率.采用纳米Beta沸石合成的BTA-02催化剂对二异丙苯烷基转移反应具有良好的催化性能,在苯和二异丙苯质量比1.5,二异丙苯的质量空速1.6 h-1,反应温度160℃,反应压力为1.0~1.3 MPa的条件下,二异丙苯转化率为50%~60%,产品中正丙苯(NPB)与异丙苯(IPB)的质量比为5×10-4~6×10-4.  相似文献   

6.
以异丙胺为模板剂合成Al PO-14分子筛,研究了不同铝源、模板剂、晶化温度、晶化时间等因素对Al PO-14分子筛合成的影响。结果表明:以拟薄水铝石为铝源原料、磷酸为磷源、异丙胺为有机模板剂,在n(Al2O3)∶n(P2O5)∶n(C3H9N)∶n(H2O)=1∶1∶1∶50,晶化温度200℃,晶化时间72 h的条件下,得到的Al PO-14分子筛晶粒均匀,形状规则。  相似文献   

7.
Beta沸石分子筛是一种具有三维十二元环孔结构的高硅沸石分子筛,具有独特的催化性能,在石油炼制及精细化工中有着广泛的应用。本文以四乙基溴化铵(TEABr)和四乙基氢氧化铵(TEAOH)为模板剂,以硅溶胶或硅胶粉末为硅源,以铝酸钠为铝源通过水热晶化法合成了Beta分子筛,并通过XRD等手段对合成样品进行表征。同时详细考察了模板剂浓度、晶化温度、晶化时间等因素对Beta分子筛晶化过程的影响,得到了合成Beta分子筛的最佳合成条件。  相似文献   

8.
采用添加晶种和表面活性剂,通过水热晶化的方法合成了小晶粒NaY型分子筛,考察了铝源、硅源、表面活性剂、水等用量对NaY型分子筛合成的影响。采用XRD、N2吸附-脱附、SEM、XRF等手段对合成的分子筛进行了表征。结果表明:在合成体系中各组成的摩尔比n(Na2O):n(Al2O3):n(SiO2):n(H2O)=2.5:0.3:6.7:192.4的条件下,制备出的NaY型分子筛与常规NaY型分子筛的XRD谱图基本一致,且比表面积高达858m2/g;SEM结果显示,NaY型分子筛呈小晶粒聚集态,粒径在100~300nm。  相似文献   

9.
采用硅溶胶为硅源、偏铝酸钠为铝源、四甲基氢氧化铵(TMAOH)和N,N,N-三甲基金刚烷氢氧化铵(TMAdaOH)为混合模板剂,通过微波加热方式在8 h内快速合成结晶度良好的纳米SSZ-13分子筛。结合XRD和SEM理化性质表征,考察了微波辅助晶化时间、晶化温度、初始凝胶中TMAdaOH用量、硅源和铝源类型等因素对合成SSZ-13分子筛的影响,进一步通过离子交换的方式负载铜离子制备Cu-SSZ-13催化剂。结果表明,在中低温(175~350℃)区域NOx转化率达99%,NH3-SCR脱硝性能满足中低温脱硝催化剂的要求。  相似文献   

10.
李建  马波  李梦华  张喜文  秦波  孙万付 《现代化工》2014,(3):97-100,102
通过优化ZSM-48分子筛的合成方案制备了低硅铝摩尔比的ZSM-48分子筛,并采用正交试验考察了铝源、碱源、模板剂、硅源、水等因素对ZSM-48分子筛合成的影响。采用XRD、XRF、SEM、N2吸附-脱附、NH3-TPD等对低硅铝摩尔比的ZSM-48分子筛进行了表征。结果表明:在合成体系中各组分的质量比m(NaOH)∶m(NaAlO2)∶m(H2O)∶m(RBr)∶m(SiO2)∶m(Seed)=1∶0.6∶90∶2.1∶17.5∶1的条件下制备的ZSM-48硅铝摩尔比达到了56.7;NH3-TPD结果表明,ZSM-48分子筛在360℃存在1个中强酸中心;SEM结果显示,低硅铝摩尔比ZSM-48是一种棒状和片状的聚结形态。  相似文献   

11.
不同硅铝比ZSM-22分子筛的合成   总被引:1,自引:0,他引:1  
吴卓  谭涓  刘靖  尹大元 《工业催化》2010,18(1):26-30
采用静态水热合成法,以氢氧化钾为碱源,硅溶胶为硅源,1,6-己二胺为模板剂,考察了晶化温度[(423~443)K]、晶化时间[(12~72)h]和原料配比对合成ZSM-22分子筛的影响,优化了合成条件。结果表明,最佳合成条件为:晶化温度433 K、晶化时间48 h、n(Al2O3)∶n(SiO2)∶n(K2O)∶n(DAH)∶n(H2O)=0.11∶10∶1.3∶3.0∶400。在此基础上,通过碱度的调变,合成了较纯n(Al2O3)∶n(SiO2)=40~130的ZSM-22分子筛。  相似文献   

12.
以四丁基氢氧化铵为模板剂、正硅酸乙酯为硅源,采用变温晶化法制备了自柱撑型纳米分子筛。利用XRD、SEM、TEM、N2物理吸附-脱附、NH3-TPD等表征手段对模板剂添加量、分子筛的生长过程、硅铝摩尔比调变范围进行了系统考察。结果表明,80℃低温晶化72 h、170℃高温晶化3 h就可得到结晶度良好的自柱撑型纳米分子筛;低温晶化时间的延长,有利于自柱撑纳米结构的形成;随着模板剂与二氧化硅的摩尔比由0.2增加至0.5,自柱撑型纳米分子筛的分支程度明显变高;通过变温晶化法可制备出硅铝摩尔比为50~300的自柱撑型纳米分子筛。研究了不同硅铝摩尔比自柱撑型纳米分子筛在正庚烷裂解反应中的性能,结果表明,硅铝摩尔比为300的分子筛催化正庚烷裂解具有最高的丙烯与丁烯选择性;随着硅铝摩尔比的降低,催化剂的稳定性逐渐提高。  相似文献   

13.
以工业水玻璃和硫酸铝为主要原料,正丁胺为模板剂,利用水热法合成出了高硅铝比ZSM-5分子筛。考察了晶化时间、晶化温度、投料硅铝比、合成体系pH值以及模板剂用量等因素对晶化产物的影响。采用X射线衍射、傅里叶变换红外光谱、低温氮气吸脱附、核磁共振、扫描电子显微镜等手段对合成样品进行了表征。结果表明:合成ZSM-5分子筛最适宜的条件为:晶化时间36h,晶化温度170℃,投料硅铝比200,合成体系的pH=11.0,模板剂加入量为模硅比0.2。在最适宜条件下合成得到的ZSM-5分子筛产物具有高的相对结晶度,BET比表面积为335m2/g,晶粒尺寸约为5μm×15μm,骨架硅铝比大于100。  相似文献   

14.
以硅藻土为原料,采用原位晶化方法合成ZSM-5分子筛,考察了晶化时间、水硅比、模板剂用量等因素对合成分子筛的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、热重(TG)手段对所合成的样品进行了表征。得出了最适宜的合成条件:晶化温度170℃,晶化时间为72 h,水硅比为n(H_2O):n(SiO_2)=45~96,模板剂用量为n(模板剂):n(Al_2O_3)=12~20。该法合成的ZSM-5分子筛具有较高的相对结晶度,具有较小的粒径且分布均一,粒径为400~500 nm。  相似文献   

15.
曹鹏  吴志杰  窦涛 《工业催化》2018,26(5):83-88
采用预晶化后补充硅源的合成方法,在模硅物质的量比0.15条件下,合成晶粒尺寸300 nm的TS-1分子筛。考察模板剂用量和预晶化时间对分子筛合成的影响,并采用XRD、SEM、TEM、UV-vis和N2吸附-脱附对分子筛进行表征,通过环己酮肟化反应考察分子筛催化性能。结果表明,相对于传统法合成的TS-1分子筛,采用预晶化补硅法合成的TS-1分子筛具有较大的比表面积和介孔体积,而且其非骨架钛含量减少,能够有效地提高环己酮肟化反应的转化率、选择性和催化剂寿命。  相似文献   

16.
以乙醇锆为锆源、正硅酸乙酯为硅源、四丁基溴化铵为模板剂,采用水热晶化法合成锆掺杂纳米ZSM-5/11共晶分子筛。采用XRD、UV-Vis、TEM和EDX等表征分子筛结构;考察晶化温度、晶化时间、硅锆比和模板剂用量对分子筛形成过程的影响。结果表明,晶化温度180℃、硅锆物质的量比100∶1和晶化时间48 h有利于分子筛晶体的生成。TEM显示合成的锆掺杂纳米ZSM-5/11分子筛为结晶完好的立方体晶体,晶粒长度约200 nm;EDX和UV-Vis证实了锆原子在分子筛中的存在。载金Zr-ZSM-5/11共晶分子筛催化剂在葡萄糖选择性氧化反应中表现出良好的催化活性。  相似文献   

17.
以富含介孔的硅基材料为硅源,四乙基氢氧化铵为模板剂,NaAlO2为铝源,调节投料硅铝的摩尔比(n(SiO2)/n(Al2O3)),通过半固相原位合成法,制备了具有不同晶型的微孔-介孔复合分子筛。采用X射线衍射仪分析样品组成,扫描电镜观测样品晶体形态,使用容量吸附分析仪测量样品孔结构。结果表明,所得样品具有微孔-介孔复合结构,在较低硅铝摩尔比条件下(n(SiO2)/n(Al2O3)=20~50),产物主要为β微孔-介孔复合分子筛;硅铝摩尔比较高时(n(SiO2)/n(Al2O3)200),合成产物为ZSM-5微孔-介孔复合分子筛。  相似文献   

18.
以谷壳制备的白炭黑为硅源、四丁基溴化铵(TBAOH)为模板剂,按0.05Na2O∶SiO2∶0.35TBAOH∶40H2O∶(0.001-0.1)Ce(NO)3.6H20的摩尔比,170℃下水热晶化48h合成了Ce-MEL分子筛,并采用XRD、SEM等手段对合成分子筛进行表征。吸附性能结果表明,Ce-MEL分子筛的投加量为2.5g/L、pH为7、振荡时间为2h时吸附效果较好,脱色率达到88.5%。  相似文献   

19.
路绪旺  汤志刚 《硅酸盐学报》2004,32(10):1209-1213
采用原位水热合成法在多孔α-Al2O3陶瓷管和工业Rasching环2种载体上一次合成制得结晶良好的Na-ZSM-5沸石分子筛膜,为制备新型催化精馏内构件奠定了基础。以四丙基溴化胺(tetrapropyl ammonium bromide,TPABr)为模板剂,硅溶胶为硅源,铝酸钠为铝源,氢氧化钠为碱源,按照20TPABr-5NaOH-Na2AlO2-30SiO2-900H2O的质量配比制成合成胶体溶液,晶化温度为180℃,晶化时间为120h。X射线衍射的结果表明:2种载体上所合成的分子筛膜均为典型的ZSM-5沸石膜。扫描电子显微镜的照片显示:载体表面完全被分子筛膜覆盖且表面晶体生长良好,晶粒尺寸在20~30μm之间,晶层厚度为20μm左右,载体表面的晶体普遍交连生长.晶体与载体结合牢固。详细比较和分析了2种载体上生长的沸石分子筛膜的晶形及晶貌。  相似文献   

20.
固定晶化条件和合成原料参数,在SiO_2-Al_2O_3-TBA~+-H_2O体系中,分别以四丁基氢氧化铵为模板剂、硫酸铝为铝源、正硅酸乙酯为硅源,考察了原料硅铝摩尔比对合成ZSM-11分子筛理化性能的影响。结果表明,随着原料硅铝摩尔比的增大,I501/I200[(501)和(200)晶面衍射峰的强度]的比值增大。原料硅铝摩尔比影响ZSM-11分子筛的晶粒大小和晶体形状。原料硅铝摩尔比为200时,合成ZSM-11分子筛的比表面积(453.9)和孔容(0.163 5)最大,介孔表面积占总表面积的40%,该催化剂的甲醇转化率为99.8%,丙烯收率为47%,P/E比值为5.84。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号