首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

2.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

3.
《Ceramics International》2017,43(13):9815-9822
Porous acicular mullite (3Al2O3·2SiO2) ceramics containing Cu3Mo2O9 as a soot oxidation catalyst was fabricated by a novel approach using commercial powders of Al2O3 and CuO, and powder obtained by controlled oxidation of ground waste MoSi2. The obtained material consisted of elongated mullite grains which are known to be effective in carbon soot removal from diesel engine exhaust. The presence of in situ created Cu3Mo2O9 was found to catalyze the carbon burnout which is an extremely important feature when it comes to filter regeneration, i.e., the captured soot removal. The carbon burnout temperature in the sample containing 12 wt% CuO was by 90 °C lower than that in the sample without CuO. Effect of sintering temperature as well as the effect of amount of CuO additive on mullite properties were studied. It was found that the increase in amount of CuO in samples sintered at 1300 °C decreased porosity and increased compressive strength of the porous mullite ceramics. The addition of 12 wt% CuO increased the strength of the porous mullite ceramics up to 70 MPa, whereas the porosity was reduced from 62% in the mullite without CuO to 44% in the mullite ceramics containing 12 wt% CuO. Although affected by the amount of CuO, the microstructure still consisted of elongated mullite grains.  相似文献   

4.
《Ceramics International》2023,49(4):6401-6408
Dense TaTiP3O12 ceramics were synthesized by the solid-state method and spark plasma sintering (SPS) with 6 wt% V2O5 as a sintering aid, and their phase, microstructure, thermal conductivity, hardness, compressive strength, and expansion property and mechanism were investigated. Results show that the pure phase can be achieved by the two methods. In particular, the sample prepared by SPS possesses a relative density of 97.62% and a porosity of 3.07%, and has better properties than that prepared by the solid-state method. The SPS sample has a thermal conductivity at room temperature of 2.03 w/(m· °C), a Vickers hardness of 4.34 GPa and a compressive strength of 175.98 MPa, which are 0.95, 1.49 and 1.59 times greater than those of the sample prepared by the solid-state method, respectively. In addition, the TaTiP3O12 ceramic prepared by SPS exhibits a linear ultralow negative thermal expansion property with a coefficient of thermal expansion of ?0.74 × 10?6 °C ?1 (-100–400 °C). The negative thermal expansion in TaTiP3O12 is induced by the coupling effect of [Ta(Ti)O6] octahedron and [PO4] tetrahedron caused by the transverse vibration of bridging oxygen atoms.  相似文献   

5.
Mullite-bonded porous SiC ceramics sintered in air by gelcasting are still challenges due to the high porosity induced severe oxidation of SiC, which results in the formation of large amount of detrimental cristobalite phase. Here in this work, small amounts of Y2O3 and CaF2 were added in SiC and Al(OH)3 raw materials as sintering additives for the in situ growth of mullite reinforcement. This additive system promoted the reaction between oxidation-derived SiO2 from SiC and Al2O3 decomposed from Al(OH)3 to mullite phase. Almost no cristobalite phase was detected when sintered at 1450℃/2 h with CaF2 addition of more than 2.0 wt%. Mullite whisker reinforcement was in situ formed due to the gas reaction mechanism caused by CaF2 addition. Thus obtained porous SiC ceramics exhibited a flexural strength of 67.6 MPa at porosity of 41.3%, which maintained exceeding 36 MPa after 8 h corrosion in 10 wt% NaOH 80℃ solution, being the best performance up to now. This high performance of porous SiC was attributed to the additive induces proper phase control and in situ formation of whisker-like mullite reinforcement.  相似文献   

6.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

7.
A new type of non-oxide sintering additive of YH2 was introduced for the fabrication of AlN ceramics with high thermal conductivity and flexural strength. The effects of YH2 addition (0–5 wt%) on the phase composition, densification, microstructure, thermal conductivity and flexural strength of pressureless sintered AlN ceramics were investigated and compared with those Y2O3-added samples (1–5 wt%). The addition of 1 wt% YH2 led to an in-situ reduction reaction with oxygen impurities, the formation of Y2O3 and finally the formation of yttrium aluminate, which in turn improved densification and microstructure. A high flexural strength (408.69 ± 28.23 MPa) was achieved. The addition of 3 wt% YH2 increased the average grain size and purified the lattice. All these effects are believed to help achieve a high thermal conductivity of 184.82 ± 1.75 W·m?1·K?1. Although the thermal conductivity was close to the value of 3 wt% Y2O3-added sample, its strength was much increased to 381.53 ± 43.41 MPa. Meanwhile, it demonstrated a good combination of the thermal conductivity and flexural strength than the values reported in some literature. However, further increasing the YH2 addition to 5 wt% resulted in a high N/O ratio that inhibited the densification behavior of AlN ceramics. The current study showed that AlN ceramics with excellent thermal and mechanical properties could be obtained by the introduction of a suitable YH2 additive.  相似文献   

8.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

9.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

10.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

11.
《Ceramics International》2022,48(2):2273-2280
Cordierite-acicular mullite composites containing 0, 25, 50, 75 and 100 wt% of mullite were fabricated from waste MoSi2 and commercial powders of Al2O3 and spinel (MgAl2O4). Careful oxidation of pulverised waste MoSi2 rendered a precursor mixture of MoO3 and amorphous SiO2, which served as pore forming agent and SiO2 source, respectively. Evaporation of MoO3 at ~750 °C allowed production of highly porous cordierite-mullite ceramic composite after sintering in air at 1350 °C for 4 h. The combination of equiaxed cordierite grains and elongated (prism-like) mullite grains, resulted in unique microstructure with open porosity between 53.3 and 55.6 vol% which makes the obtained composite convenient for application as diesel particulate filter material. The presence of mullite affected four key thermo-mechanical properties which determine the thermal shock resistance of cordierite-mullite composite. The best thermal shock resistance was measured in composite containing 75 wt% of mullite. It was a result of improved thermal conductivity (1.081 W/mK) and bending strength (3.62 MPa) and relatively low values of coefficient of thermal expansion (3.8 × 10?6 K?1) and elastic modulus (2.27 GPa).  相似文献   

12.
《Ceramics International》2023,49(7):10238-10248
High-strength ceramics were prepared from high alumina fly ash (HAFA) and activated alumina as raw materials with magnesia as a sintering additive. The growth kinetics and influence mechanism of secondary mullite whiskers were investigated. Meanwhile, the effects of the Al2O3/SiO2 mass ratio (A/S) and the amount of magnesia on the content and morphology of mullite in the green body were investigated, so as to emphasize the effect of the liquid phase in the sintering process on the growth of secondary mullite whiskers. The results showed that the aspect ratio of secondary mullite whiskers increased significantly after adding activated alumina to increase the A/S ratio of raw materials. When 30 wt% activated alumina was added, the mullite content increased by 5.39%, and the whisker length increased from 1.36 μm to 4.18 μm. The addition of magnesia improved the liquid phase formed during the sintering process and the K value method was used to determine the sintering liquid phase content under various conditions. It was observed that increasing the magnesia level by 1 wt% could raise the liquid phase content by 5–7%. When the total liquid content of the system was 30–40%, the growth activation energy in the diameter direction of the whisker reduced significantly, promoting the growth of secondary mullite whiskers along the C axis. The morphology of mullite gradually developed from fibrous to long columnar crystal, making it combine more densely with the green body matrix. Furthermore, the staggered long columnar mullite crystal structure changes the fracture mode of ceramics from intergranular to transgranular fracture, which fully uses the high mechanical strength of mullite. As a result, the fracture energy and strength of ceramics are significantly improved.  相似文献   

13.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

14.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

15.
《Ceramics International》2023,49(19):31846-31854
In this study, the effect of the alumina particle size on the formation of mullite using a silica gel powder and micro- and nano-scale Al2O3 powders as raw materials was investigated. The optimized Al2O3 source was then reacted with the silica gel to prepare porous mullite-based ceramics. The results revealed that the highly reactive nano-Al2O3 powder could form mullite at a relatively low firing temperature. Therefore, the nano-Al2O3 powder was used to prepare porous mullite-based ceramics by firing at 1600 °C, 1650 °C and 1700 °C. The pore size of the prepared porous mullite-based ceramics ranges from tens to hundreds of micrometres, with the apparent porosity being 42.8–58.0%. Further, the mullite content in the samples increased with increasing firing temperature, and a higher firing temperature promoted sintering, resulting in improved strength of the sample. After calcination at 1700 °C, the mullite content in the sample reached 81.8%, and the sample showed excellent thermal shock resistance. The strengths of the samples before and after thermal shock were found to be 23.6 and 15.58 MPa, with the residual strength ratio being 66%.  相似文献   

16.
《Ceramics International》2016,42(14):15203-15208
In this study, ytterbium monosilicate (Yb2SiO5)-added sintered mullite ceramics are prepared as candidate materials for environmental barrier coatings (EBCs). The effect of adding Yb2SiO5 on the physical and mechanical properties of the sintered mullite ceramics is investigated. The Yb2O3–SiO2–Al2O3 ternary phase diagram indicates that adding Yb2SiO5 to the mullite goes beyond simply mixing; instead, liquid sintering occurs. Therefore, when we add Yb2SiO5 to the mullite, the sintered body possesses a denser microstructure and faster densification rate than does pure mullite. The density rapidly increases with the addition of 6 wt% Yb2SiO5 in the mullite, and almost full densifications are achieved with the addition of 12 wt% and 18 wt% Yb2SiO5. In this study, mullite ceramic that contains 12 wt% Yb2SiO5 exhibits the smallest plastic deformation and the highest elastic modulus among ceramics containing 6, 12, and 18 wt% Yb2SiO5, according to Hertzian indentation results. The results suggest that 12 wt% Yb2SiO5-doped mullite may be expected to act as a potential EBC material based on its excellent elastic properties, dense microstructure, and appropriate coefficient of thermal expansion.  相似文献   

17.
Using Al2O3 and TiO2 as raw materials, adding MgO as heat stabilizer and mullite as enhancer, aluminum titanate-mullite multiphase ceramics were successfully prepared by solid phase synthesis. The effects of MgO and mullite were systematically studied on the phase composition, microstructure, thermal stability, sintering properties, and mechanical properties of aluminum titanate ceramics. The results showed that the introduction of Mg2+ can partially replace Al3+ to form MgxAl2(1-x)Ti(1+x)O5 solid solution, improved the thermal stability of aluminum titanate ceramics, and promoted the formation and growth of grains, which reduced the sintering temperature. The crack deflections caused by mullite particles improved the mechanical properties. The filling effect of mullite particles and the formation of silica in mullite raw materials were conducive to ceramic densification. The statistics of Mg4M10 sample were as follows: the porosity was only 2.9%, the flexural strength was as high as 64.15 MPa, and the thermal expansion coefficient was 1.35 × 10−6 K−1 (RT-700°C), encouraging the application of ceramics with high thermal mechanical properties.  相似文献   

18.
ABSTRACT

To further improve the thermal insulation performance of porous mullite ceramics used in important industrial sectors, a combined foam-gelcasting and pore-former addition approach was investigated in this work, by which hierarchical porous mullite ceramics with excellent properties, in particular, thermal insulation property, were prepared. Both mesopores (2–50?nm) and macropores (117.8–202.7?μm) were formed in porous mullite ceramics resultant from 2?h firing at 1300°C with various amounts of submicron-sized CaCO3 pore former. The former mainly arose from the decomposition of CaCO3, and the latter from the foam-gelcasting process. The porous samples prepared with CaCO3 addition had low linear shrinkage of 2.35–4.83%, high porosity of 72.98–79.07% and high compressive strength of 5.52–14.82?MPa. Most importantly, they also exhibited a very low thermal-conductivity, e.g. 0.114?W?m?1?K?1 at 200°C, which was much lower than in the cases of their counterparts prepared via the conventional foam-gelcasting route.  相似文献   

19.
High-strength self-reinforced porous mullite ceramics were prepared via foam-gelcasting using mullite powder as a main raw material, AlF3·3H2O (0–8 wt%) as an additive, Isobam-104 as a dispersing and gelling agent, sodium carboxymethyl cellulose as a foam stabilizing agent, and triethanolamine lauryl sulfate as a foaming agent. The effects of AlF3·3H2O content on rheological and gelling behaviors of the slurries, and porosity and mechanical properties of self-reinforced porous mullite samples were examined. Addition of AlF3·3H2O promoted the in-situ formation of elongated mullite in the fired porous samples, which improved considerably their mechanical properties. Compressive strength and flexural strength of 67.0% porous mullite ceramics prepared with addition of 6 wt% AlF3·3H2O was as high as 41.3 and 13.9 MPa, respectively. Its hot modulus rupture (HMOR) increased initially with the testing temperature, and peaked (with a maximum value of 16.6 MPa) at 800 °C above which it started to decrease with the testing temperature. Nevertheless, it was still retained as high as 6.7 and 2.8 MPa at 1200 and 1400 °C, respectively.  相似文献   

20.
Porous anorthite/mullite ceramics with both high porosity and high strength have been successfully fabricated by foam-gelcasting and pressureless sintering technology, using α-Al2O3, SiO2, and CaCO3 as starting materials and MnO2 as sintering aids. The porous mullite ceramics prepared in this study had 83.3% porosity and 0.3 W/m·K thermal conductivity, exhibited compressive strength value as high as 6.1 MPa. The samples fabricated with mullite content of 30 mol% possessed 79.4% porosity and 5.9 MPa compressive strength showed thermal conductivity as low as 0.19 W/m·K. With the addition of MnO2, the properties of the prepared materials varied slightly when mullite content changed in a large scale. The results showed that the addition of MnO2 promoted the reaction, affected sintering and grain growth, and contributed to high strength and low-thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号