首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

2.
《Ceramics International》2016,42(16):18657-18665
The present study has been conducted in order to investigate the effect of the surface morphology of SiC inner coating on the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating for C/C composites. The microstructure of SiC inner coatings prepared by chemical vapor deposition and pack cementation at different temperatures were analyzed by X-ray diffraction, scanning electron microscopy, and 3D Confocal Laser Scanning Microscope. Tensile bonding strength and oxyacetylene ablation testing were used to characterize the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating, respectively. Results show that SiC inner coating prepared by chemical vapor deposition has a smooth surface, which is not beneficial to improve the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating. SiC inner coating prepared by pack cementation at 2000 °C has a rugged surface with the roughness of 72.15 µm, and the sprayed ZrB2-SiC coating with it as inner layer exhibits good bonding strength and ablation resistance.  相似文献   

3.
Pre-oxidized fibers as reinforcement are candidates for reducing the overall cost of C/C composites with superior properties. This study investigated the dynamic oxidation and protection of the pre-oxidized fiber C/C composites (Pr-Ox-C-C). According to the Arrhenius equation, the oxidation kinetics of the Pr-Ox-C-C consisted of two different oxidation mechanism with the transition point was at about 700 °C. Scanning electron microscopy investigation showed that oxidation initiated from the fiber/matrix interface of composites, whereas the matrix carbon was easily oxidized. To improve the anti-oxidant properties of Pr-Ox-C-C, a ceramic powder-modified organic silicone resin/ZrB2-SiC coating was prepared by the slurry method. The coated samples were subjected to isothermal oxidation for 320 h at 700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C with incurred weight losses of ? 1.6%, 0.77%, ? 1.28%, 0.68% and 1.19%, respectively. After 110 cycles of thermal shock between 1100 °C and room temperature, a weight loss of 1.30% was obtained. The Arrhenius curve presented four different phases and mechanisms for coating oxidation kinetics. The excellent oxidation resistance properties of the prepared coating could be attributed to the inner layer which was able to form B2O3-Cr2O3-SiO2 glass to cure cracks, and the ZrB2-SiC outer layer that could provide protective oxides to reduce oxygen infiltration and to seal bubbles.  相似文献   

4.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

5.
《Ceramics International》2022,48(3):3206-3215
B4C modified HfB2-SiC coating for C/C substrate was designed to expand the application of HfB2-SiC based coating in low-medium temperature environment. The oxidation protection behavior of HfB2-SiC based ceramic coatings with and without B4C at 1073, 1273 and 1473 K was tested and analyzed. The experimental results reveal that the oxidative damage of HfB2-SiC coated C/C reduces by over 20% after introducing B4C, which may be due to the protection of borosilicate glass with more suitable viscosity during oxidation. Meanwhile, B4C can improve the oxidation protection ability of HfB2-SiC coating best at 1473 K. And the introduction of B4C can reduce the mass loss of HfB2-SiC coated C/C sample by 77.6% after oxidation for 58 h at 1473 K. The fluidity of glass film becoming better with temperature-rising, and the fluid borosilicate glass layer makes the coated samples have the best anti-oxidation properties at 1473 K among these three temperatures.  相似文献   

6.
To improve the corrosion resistance of the carbon fiber reinforced magnesium matrix composites (Cf/Mg composites), ZrO2 and ZrB2-SiC/ZrO2 composite coatings were prepared by supersonic atmospheric plasma spraying (SAPS) on Cf/Mg composites. The microstructure and phase composition of the coatings before and after the corrosion test were investigated. Open circuit potential and potentiodynamic polarization tests were measured at room temperature. Results revealed that the corrosion current density (icorr) of the ZrO2 coated Cf/Mg composites decreased by one order while the ZrB2-SiC/ZrO2 coated Cf/Mg composites reduced by two orders. Compared with Cf/Mg composites, the corrosion potential (Ecorr) of the ZrO2 and ZrB2-SiC/ZrO2 coated Cf/Mg composites increased by 220.5?mV and 1021.8?mV respectively, indicating that the ZrB2-SiC/ZrO2 composite coatings greatly improve the corrosion resistance of Cf/Mg composites. The uniform distribution of the SiC particles with small grain size in ZrB2 is responsible for the densification of the coating. The ZrB2-SiC/ZrO2 composite coatings provide a barrier for the substrate to impede the entry of Cl- in the corrosion solution, thus exhibiting a better corrosion resistance than the ZrO2 coating.  相似文献   

7.
《Ceramics International》2016,42(8):9511-9518
A double-layers ZrB2-based ceramic coatings containing ZrB2, MoSi2, SiCw and borosilicate glass were prepared on lightweight and porous ZrB2-modified carbon–bonded carbon fiber composites (CBCFs/ZrB2) by a trace oxygen sintered technology. The high-temperature erosion resistance of the coated CBCFs/ZrB2 was investigated under simulated atmospheric re-entry conditions by a high frequency plasma wind tunnel test with a heat fluxes of 1.3 MW/m and stagnation pressure of 1.2kPa. The results showed that the coated composites exhibited excellent ablation resistance for 800 s and the different positions of coating exhibit different response temperatures and microstructures. After ablation, the micrographs of marginal position show more compact than central position at sample surface. In addition, the side of the samples exhibits crack region, B2O3 precipitates region and virgin coating region.  相似文献   

8.
To inhibit the destructive evolution of the HfB2-SiC coating during oxidation, La2O3 was added to modify the oxygen-blocking capability of the HfB2-SiC coating. The effect of La2O3 content on the oxygen barrier capacity of HfB2-SiC was investigated. The addition of 5 vol.% La2O3 lowered the oxidation activity and strengthened the inert oxygen barrier capacity of the HfB2-SiC coating, which made the oxygen permeability and maximum weight change rate of the coating decrease by 30.32% and 73.97%, respectively. Due to the solid solution reaction of the dispersed La2O3, HfO2, and SiO2 nanoparticles, a stable Hf-B-La-Si-O multiphase glass was formed on the surface of the coating. Besides, the high-melting-point particles, such as HfO2, La2Hf2O7, and HfSiO4, dispersed in the glass layer as hard particles and formed a mosaic structure based on the Hf-B-La-Si-O compound, which increased the cumulative protection efficiency of the HfB2-SiC coating to 98.5% and reduced the inert factor value by 84.57%. However, the excessive consumption of SiO2 glass by La2O3 results in dendritization of the generated glass when the La2O3 content is above 10 vol.%, which reduced the self-healing capability of the generated glass and instead weakened the oxygen barrier properties of the HfB2-SiC-La2O3 coatings.  相似文献   

9.
To protect carbon/carbon (C/C) composites from oxidation at high temperature, Y2O3 modified ZrB2-SiC coating was fabricated on C/C composites by atmospheric plasma spraying. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, and XRD. Experiment results showed that the coating with 10 wt% Y2O3 presented a relatively compact surface without evident holes and cracks. No peeling off occurred on the interface between the coating and substrate. The ZSY10 coating underwent oxidation at 1450 °C for 10 h with a mass loss of 5.77%, while that of ZS coating was as high as 16.79%. The existence of Y2O3 played an important role in inhibiting the phase transition of ZrO2, thus avoiding the cracks caused by the volume expansion of the coating. Meanwhile, Y2SiO5 and ZrSiO4 had a similar coefficient of thermal expansion (CTE), which could relieve the thermal stress inside the coating. The ceramic phases Y2SiO5, Y2Si2O7 and ZrSiO4 with high thermal stability and low oxygen permeability reduced the volatilization of SiO2.  相似文献   

10.
The HfB2-MoSi2-SiC oxygen blocking coatings were prepared by the spark plasma sintering (SPS) technique, whose oxidation inhibition ability was further strengthened by the pre-oxidation treatment. The effect of MoSi2 content and pre-oxidation treatment process on the oxygen blocking ability of the HfB2-MoSi2-SiC coating at 1973 K were conducted. After SPS, for the HfB2-MoSi2-SiC coatings with 20 wt%, 40 wt%, and 60 wt% MoSi2, the relative density of the coatings are 92.6%, 93.9%, and 85.6%, respectively. Owing to the enhanced compactness of the coatings, increasing MoSi2 content can significantly improve the protection efficiency of the coatings during the activation oxidation stage. However, due to the increased formation of gaseous by-products during the inerting oxidation stage, excessive MoSi2 weaken the oxidation inhibition ability of the coatings. The sufficient dispersion of Hf-oxides nanocrystals in the glass layer conduces to enhance the oxygen blocking ability of the glass layer, making the 40HfB2-40MoSi2-20SiC coating present the best oxidation protective ability. The pre-oxidation treatment at 1773 K conduces to form the steady glass layer with fewer defects at the cost of a lower oxidation consumption of the coating, which enhanced the protection efficiency of the coating from 96.9% to 99.8% and reduced the oxygen permeability from 0.13% to 0.028%.  相似文献   

11.
A SiCN/borosilicate glass anti-oxidation coating with double-layer structure was designed for C/C aircraft brake materials. The SiCN layer was introduced as transition layer to improve the wettability between borosilicate glass and C/C composites, and the microstructure results indicated that the coating with SiCN inner layer was dense and uniform. The oxidation resistance evaluation of the coated samples was conducted at 800 °C in air for 10 h. The weight loss of SiCN/borosilicate glass coated samples valued ~ 5.66% indicated that the oxidation resistant property of the simple SiCN/borosilicate glass coating was not good, which was mainly due to the relative large viscosity of borosilicate glass at 800 °C. B4C was introduced to add into the outer glass coating to improve the self-healing ability of the coating. After oxidized at 800 °C in air for 10 h, the weight loss of the SiCN/borosilicate glass-B4C coated samples was ~ 2.48%. B4C could consume the oxygen diffused into the coating and the reacted product B2O3 with a better fluidity at 800 °C could effectively heal cracks and pores in the coating to improve the oxidation resistance property. The reaction of B4C oxidized to B2O3 was accompanied with ~ 1.5 times volume expansion, which was also beneficial for the healing of defects.  相似文献   

12.
SiC and SiCw/SiC coatings were prepared on two-dimensional carbon fiber reinforced silicon carbide ceramic matrix composites (2D C/SiC), and strengthening/toughening of the composite by the coatings was investigated. After coating, the density of the C/SiC composites was increased effectively and the mechanical properties were improved significantly. Compared with SiC coating, SiCw/SiC coating showed the more significant effect on strength/toughness of the composites. Coatings had two effects: surface strengthening and matrix strengthening. The latter was the dominant effect. The surface strengthening can increase the crack initiation stress, while the matrix strengthening can enhance the crack propagation resistance. The former effect increased the strength and the latter effect increased the toughness.  相似文献   

13.
In this study, the amorphous C, ZrB2, and BN single-layer coatings as well as C/BN, C/ZrB2, ZrB2/BN, and C/ZrB2/BN composite coatings were prepared on SiC fibers (SiCf) by an in situ synthesis and solution impregnation–pyrolysis method. Subsequently, SiCf/SiBCN composites were fabricated by hot-pressing sintering at 1900℃/60 MPa/30 min to explore the influence of different coatings on the microstructure and mechanical performance of resulting composites. After the preparation of single-layer-coated SiCf, the SiCf(BN) or SiCf(ZrB2) tended to be overlapped with each other, whereas the dispersion of amorphous C–coated SiCf was satisfying. Besides, some uneven areas and attached particles have appeared on fiber surfaces of the SiCf(BN) or SiCf(ZrB2), whereas smooth and dense surfaces of amorphous C–coated SiCf were observed. Because the uniformity of ZrB2 coatings can be partially damaged by the subsequent coating process of BN, the composite coatings of ZrB2/BN and C/ZrB2/BN were thereby not suitable for strengthening SiBCN matrix. The SiCf/SiBCN composites with C/ZrB2 coatings have desirable comprehensive mechanical properties. Nevertheless, the conventional toughening mechanisms such as fiber pull-out and bridging, and crack deflection are not available for these composites because the serious crystallization of SiCf leading to great strength loss, resulting in catastrophic brittle fracture.  相似文献   

14.
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperatures, a SiC-Si coating with micro-pores was prepared by slurry and heat-treatment on the surface of C/C composites with SiC-Si inner coating acquired by pack cementation (PC). The microstructure, phase composition, element distribution, and anti-oxidation properties of the dual-layer SiC-Si coating were investigated. The results show that a SiO2-SiC inlay structure was formed during the oxidation process, due to a large amount of SiO2 rapidly generated by the oxidation of SiC particles in the porous coating. The coating with this structure could inhibit the cracking of SiO2 glass and had a good resistance to oxygen diffusion. Moreover, the crack propagation was blocked by the remaining micro-pores of the coating. The coating could protect C/C composites against oxidation for 846 h only with the mass loss of 0.16 % at 1773 K in air.  相似文献   

15.
《Ceramics International》2022,48(18):25788-25797
The Si-SiC-MoSi2 and Si-SiC coatings were proposed to repair the damaged MoSi2-SiC/SiC coated C/C composites by laser directed energy deposition. Laser ablation was used to assess the repair effect. Results showed that both the repaired coatings with dense structure could restore the geometric size of damaged area. Compared with the Si-SiC-MoSi2 coating, the Si-SiC repaired coating with higher laser reflectivity and more free Si could reduce the heat generation and enhance the heat dissipation during ablation, which lowered the maximum temperature by 347.49 K and 810.77 K under 300 W and 500 W ablation for 7 s separately, beneficial to avoid the secondary laser damage of the repaired area.  相似文献   

16.
To improve the oxidation resistances of SiC coated C/C composites by a pack cementation (PC) method at high temperature and alleviate the siliconization erosion of molten silicon on C/C substrate during the preparation of SiC coating, a SiO2-SiC reticulated layer with SiC nanowires was pre-prepared on C/C composites through combined slurry painting and thermal treatment before the fabrication of SiC coating. The presence of porous SiO2-SiC layer with SiC nanowires was beneficial to fabricate a compact and homogeneous SiC coating resulting from synergistic effect of further reaction between SiO2 and pack powders and the reinforcement of SiC nanowires. Therefore, the results of thermal shock and isothermal oxidation tests showed that the mass loss of modified SiC coating was only 0.02 % after suffering 50-time thermal cycles between room temperature and 1773 K and decreased from 5.95 % to 1.08 % after static oxidation for 49.5 h in air at 1773 K. Moreover, due to the blocking effect of SiO2-SiC reticulated layer on siliconization erosion during PC, the flexural strength of SiC coated C/C composites with SiO2-SiC reticulated layer increased by 64.8 % compared with the untreated specimen.  相似文献   

17.
The toughening mechanism in continuous fiber toughened ZrB2-SiC ceramic matrix (Cf/ZrB2-SiC) composites was studied upon introduction of pyrolytic carbon coating at the fiber/matrix interface. The real-time deformation behavior, surface crack initiation and evolution of Cf/ZrB2-SiC composites under tensile load were studied using in-situ scanning electron microscopy (SEM) to determine the typical damage modes and toughening mechanisms. A refined microscopic representative volume element (RVE) inserting the cohesive zone elements was established to study the PyC interface layer damage by using finite element method. It was found that PyC interface layer damage induced by thermal residual stress (TRS) was one of critical factors affecting the mechanical performance of the Cf/ZrB2-SiC composites. The critical thickness of the interface layer was also further determined by analyzing the effect of interface layer thickness on the distribution of TRS, which can guide the design of PyC interface layer for manufacturing the Cf/ZrB2-SiC composites.  相似文献   

18.
This study aims at reducing the oxidation by forming a prior-protective-oxide scale by laser-surface-treatment of two ZrB2-SiC based composites namely ZrB2-20v/oSiC-2v/oB4C-0.24v/oCf (ZSC) and ZrB2-20v/oSiC-2v/oB4C (ZS). ANSYS 15.0 was used to determine laser processing regime. Rigorous theoretical calculations provided temperature distribution, laser parameters and resulting laser power densities required to produce tetragonal ZrO2. Both the theoretical prediction as well as experimentation show that the laser-surface-treatment with the laser power densities of 31.85 and 56.61 W/mm2 for 20 and 30 s render formation of nano-tetragonal-ZrO2 (100–130 nm) at room temperature (RT). Morphology and size of the nano-tetragonal-ZrO2 grains depends on the laser exposure time. Nano-grain size helps in stabilizing tetragonal ZrO2 phase at RT without the need of Y2O3 addition. Nano-tetragonal-ZrO2 may facilitate better ability for pegging, prevent scale-spallation and act as thermal barrier coating (TBC).  相似文献   

19.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

20.
ZrB2-SiC coatings with different ZrB2 contents were prepared by liquid phase sintering. The oxidation processes of coatings were explained according to TG results of ZrB2-SiC coatings and powders tested from 298 K to 1773 K. Results show that, increasing ZrB2 content made the weight of the samples changed from weight-loss of 10.04% to weight-gain of 0.14%, while the fastest weight-loss regions were narrowed, whose inflection points reduced from 1310℃ to 1050℃. Increasing ZrB2 content made the relative oxygen permeability of the ZrB2-SiC/SiC coatings reduced from 40%–60% to -10%-5%. Increasing ZrB2 content enhanced high-temperature stability of coatings, making final weight of samples changed from weight-loss of 0.16% to weight-gain of 0.11% after oxidation at 1773 K for 200 h. The peeling and dispersion of Zr-oxides formed Zr-B-Si-O compound glass layer, presenting enhanced stability, dispersion strengthening and pinning effect of Zr-oxides, which were responsible for the excellent anti-oxidation protective effect of coatings in a broad temperature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号