首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(3):3435-3438
Graphene nanoribbons (GNRs) were obtained by unzipping multiwall carbon nanotubes (MWCNTs). Three different silicon nitride-carbon nanostructures were prepared by spark plasma sintering (SPS): ceramic composites that contained 1 wt% carbon nanofibers (CNFs), 1 wt% MWCNTs and 1 wt% GNRs respectively. The α to β-Si3N4 transformation ratio and thermal diffusivity of GNR/Si3N4 composites were higher than both CNF/Si3N4 composites and MWCNT/Si3N4 composites. Furthermore, the higher thermal diffusivities of GNR/Si3N4 composites can primarily be attributed to the higher number of elongate β-Si3N4 grains.  相似文献   

2.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

3.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt.% of multilayered graphene (MLG) platelets were studied and compared to monolithic Si3N4. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at temperatures 25 °C, 300 °C, 500 °C, and 700 °C in dry sliding. Addition of such amounts of MLG did not lower the coefficient of friction. Graphene platelets were integrated into the matrix very strongly and they did not participate in lubricating processes. The best performance at room temperature offers material with 3 wt.% graphene, which has the highest wear resistance. At medium temperatures (300 °C and 500 °C) coefficient of friction of monolithic Si3N4 and composite with 1%MLG reduced due to oxidation. Wear resistance at high temperatures significantly decreased, at 700 °C differences between the experimental materials disappeared and severe wear regime dominated in all cases.  相似文献   

4.
《Ceramics International》2017,43(10):7816-7826
Gradient cermet composites possessing high surface hardness, flexural strength and interface bonding strength were fabricated using vacuum hot-pressing sintering. Ball-on-disk tests were performed to investigate the tribological properties of the gradient cermet composites against 440 C stainless steel, Al2O3 and Si3N4 balls at different sliding speed and load in comparison with traditional Ti(C,N) cermets. The tribological behavior was characterized in terms of friction coefficient and wear rate. The results showed that friction coefficient was significantly dependent on the sliding speed and load when sliding against Al2O3 and Si3N4. However, there was no obvious relation between them during sliding against 440 C stainless steel due to the formation of metal adhesive layer. Gradient cermet composites exhibited a higher friction coefficient but lower wear rate than traditional Ti(C,N) cermets. The main wear mechanism of gradient cermet composites was adhesion wear during sliding against 440 C stainless steel, while abrasion wear was the predominant mechanism during sliding against Al2O3 and Si3N4. It was expected that gradient cermet composites would be excellent candidates for cutting tool materials.  相似文献   

5.
The amorphous carbon nitride coatings (a-CNx) were deposited on Si3N4 disks using ion beam assisted deposition (IBAD), and their composition and chemical bonding were determined by X-ray photoelectron spectroscopy (XPS). The a-CNx coatings' hardness was measured by nano-indentation and the friction and wear property of the a-CNx coatings sliding against Si3N4, SiC, Al2O3, SUS440C and SUJ2 balls in water were investigated by using ball-on-disk tribo-meter. The worn surfaces were observed using optical microscopy and analyzed by XPS. The results of XPS analysis showed that the a-CNx coatings contained 12 at.% nitrogen and the major chemical bonding was sp2 C = N and sp3C–N. The nano-hardness of the a-CNx coatings was 29 GPa, higher than those of balls. Among five kinds of tribo-systems, the lowest friction coefficient was obtained in the range of 0.01 to 0.02 for the tribo-systems with SiC and Si3N4 balls, the largest wear rate of the a-CNx coating of 1.77 × 10 7 mm3/Nm was obtained as sliding against Al2O3 ball, while the smallest wear rate of a-CNx coating of 1.44 × 10 8 mm3/Nm was gotten as sliding against Si3N4 ball. However, SUJ2 ball showed the highest wear rate of 7.0 × 10 7 mm3/Nm, whereas Al2O3 ball exhibited the lowest wear rate of ball of 3.55 × 10 9 mm3/Nm. The XPS analysis on the worn surface for the a-CNx coatings displayed that the nitrogen concentration decreased and the sp2-bonding-rich structure was formed after sliding tests in water.  相似文献   

6.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

7.
Novel highly electrically conducting nanocomposites consisting of a silicon nitride (Si3N4) ceramic matrix containing up to 13.6 vol.% of nitrogen-doped multi-walled carbon nanotubes (CNx) were fabricated. As-synthesized CNx were treated with hydrogen peroxide in order to efficiently detach/isolate the nanotubes from bundles, then they were mixed with the ceramic powders and fully densified using the spark plasma sintering (SPS) technique. Composites containing 13.6 vol.% CNx reached an electrical conductivity of 2174 S m−1 that is the highest value reported hitherto for carbon nanotubes/Si3N4 nanocomposites. The nitrogen doping also favored a strong mechanical interlocking between the nanotubes and the Si3N4 matrix; when compared to the undoped carbon nanotubes. These novel nanocomposites could be used in devices associated to power generation or telecommunications.  相似文献   

8.
《Ceramics International》2017,43(5):4379-4389
The tribological behaviors of Si3N4-hBN ceramic composites sliding against steels (austenitic stainless steel (ASS) and 45 steel) under dry friction conditions at different loads were investigated by using an MMW-1 type vertical universal friction and wear tester. The experimental results showed that the friction coefficients and wear rates first showed a decrease and then an increase with an increase in the load under dry friction conditions. The better tribological performance was exhibited by the SN10/ASS sliding pair under a load of 20 N (the friction coefficient was as low as 0.27 and the wear rates of both pin and disc had a magnitude of 10−6 mm3 N−1 m−1). This may be attributed to the formation of a black surface film (consisting of B2O3, SiO2, and Fe2O3). For the same sliding pair, when the load was 10 N, the dominating wear mechanism was abrasive wear. Hence, the friction coefficient was higher (0.7). When the load increased to 30 and 50 N, the wear mechanism of the SN10/ASS sliding pair was a combination of abrasive and adhesive wears, and higher friction coefficients (0.48 and 0.72 under loads of 30 and 50 N, respectively) were obtained. On the other hand, the contents of hBN also showed a significant impact on the tribological behaviors of the Si3N4-hBN/ASS sliding pairs. When the hBN content was less than 10%, the friction coefficients of the Si3N4-hBN/ASS sliding pairs decreased with an increase in the hBN content. On the other hand, at hBN contents of 10% or more, the friction coefficients of the sliding pairs increased with an increase in the hBN content. Under the same experimental conditions, the Si3N4-hBN/45 steel pairs showed poor tribological properties as compared with the Si3N4-hBN/ASS pairs.  相似文献   

9.
Highly homogenous carbon nanotube (CNT)/silicon nitride (Si3N4) nanocomposites with high CNTs loadings, up to 22 vol.%, are developed through the in-situ synthesis of CNTs on the ceramic powders, and further densification using the spark plasma sintering technique. The CNTs dispersion degree, the composite density, and their properties, especially the tribological ones, are evaluated and compared with those obtained for nanocomposites processed by the ex-situ method based on the mixing of nanotubes and ceramic powders in a solvent media. Fully dense in-situ 12 vol.% CNTs nanocomposites are 87% and 65% more wear resistant than monolithic Si3N4 materials and ex-situ nanocomposites, respectively, in the latter case due to the higher nanotubes dispersion and better mechanical properties attained by the in-situ process. These new in-situ CNTs nanocomposites present multifunctionality and are promising for emerging applications, especially for gasoline direct injection systems.  相似文献   

10.
In this study, silicon nitride (Si3N4) ceramics added with and without boron nitride nanotubes (BNNTs) were fabricated by hot-pressing method. The influence of sintering temperature and BNNTs content on the microstructures and mechanical properties of Si3N4 ceramics were investigated. It was found that both flexural strength and fracture toughness of Si3N4 were improved when sintering temperature increases. Moreover, α-Si3N4 phase could transform into β-Si3N4 phase completely when sintering temperature rises to 1800 °C and above. BNNTs can enhance the fracture toughness of Si3N4 dramatically, which increases from 7.2 MPa m1/2 (no BNNTs) to 10.4 MPa m1/2 (0.8 wt% BNNTs). However, excessive addition of BNNTs would reduce the fracture toughness of Si3N4. Meanwhile, the flexural strength and relative density of Si3N4 decreased slightly when BNNTs were added. The related toughening mechanism was also discussed.  相似文献   

11.
Supported-NiO catalysts were tested in the synthesis of carbon nanotubes and carbon nanofibers by catalytic decomposition of methane at 550 °C and 700 °C. Catalytic activity was characterized by the conversion levels of methane and the amount of carbons accumulated on the catalysts. Selectivity of carbon nanotubes and carbon nanofiber formation were determined using transmission electron microscopy (TEM). The catalytic performance of the supported-NiO catalysts and the types of filamentous carbons produced were discussed based on the X-ray diffraction (XRD) results and the TEM images of the used catalysts. The experimental results show that the catalytic performance of supported-NiO catalysts decreased in the order of NiO/SiO2 > NiO/HZSM-5 > NiO/CeO2 > NiO/Al2O3 at both reaction temperatures. The structures of the carbons formed by decomposition of methane were dependent on the types of catalyst supports used and the reaction temperatures conducted. It was found that Al2O3 was crucial to the dispersion of smaller NiO crystallites, which gave rise to the formation of multi-walled carbon nanotubes at the reaction temperature of 550 °C and a mixture of multi-walled carbon nanotubes and single-walled carbon nanotubes at 700 °C. Other than NiO/Al2O3 catalyst, all the tested supported-NiO catalysts formed carbon nanofibers at 550 °C and multi-walled carbon nanotubes at 700 °C except for NiO/HZSM-5 catalyst, which grew carbon nanofibers at both 550 °C and 700 °C.  相似文献   

12.
Advanced ceramic materials have proved their superior wear resistance as well as mechanical and chemical properties in a wide range of industrial applications. Today there are standard materials for components and tools that are exposed to severe tribological, thermal or corrosive conditions. The main aim of this work is to develop novel, highly efficient tribological systems on the basis of ceramic/graphene nanocomposites as well as to prove their superior quality and to demonstrate their suitability for technical applications e.g. for slide bearings and face seals in aqueous media. Current research in the field of ceramic nanocomposites shows that is possible to make ceramic materials with improved mechanical and tribological properties by incorporating graphene into the Si3N4 structure. Multilayered graphene (MLG) was prepared by attritor milling at 10 h intensive milling of few micrometer sized graphite powders. The large quantity, very cheap and quick preparation process are a main strengths of our MLG. Si3N4/MLG nanocomposites were prepared by attritor milling and sintered by hot pressing (HP). The Si3N4 ceramics were produced with 1 wt%, 3 wt%, 5 wt% and 10 wt% content of MLG. Their structure was examined by transmission electron microscopy (TEM). The tribological behavior of composites in aqueous environment was investigated and showed the decreasing character of wear at increased MLG content. This new approach is very promising, since ceramic microstructures can be designed with high toughness and provide improved wear resistance at low friction.  相似文献   

13.
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties.  相似文献   

14.
NCD films deposited on silicon nitride (Si3N4) ceramic substrates by hot-filament chemical vapour deposition (HFCVD) technique were biotribologically assessed under lubrication of Hank's balanced salt solution (HBSS) and dilute fetal bovine serum (FBS), using a pin-on-flat test configuration. The reciprocating tests were conducted under an applied load of 45 N during 500,000 cycles using a NCD coated Si3N4 biocompatible ceramic substrates with two different surface preparations: i) polished (P) and ii) polished and plasma etched (PE). Friction coefficient values of 0.02 and 0.12 were measured for the P samples under HBSS and FBS lubrication, respectively. PE samples showed increased adhesion relatively to P ones and withstood 6 km of sliding distance without any evidence of film fracture but with friction coefficients of 0.06 for HBSS and 0.10 for FBS experiments. Evidences of protein attachment and salt deposition were found, being the responsible for the enhancement of friction under FBS relatively to HBSS. The wear rates measured for the NCD films are in the range of ~10 9–10 8 mm3·N 1m 1, values that are similar to the best values found for ceramic-on-ceramic combinations.  相似文献   

15.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

16.
Cubic boron nitride (cBN) coatings were deposited on silicon nitride (Si3N4) cutting inserts through conductive boron-doped diamond (BDD) buffer layers in an electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) system. The adhesion and crystallinity of cBN coatings were systematically characterized, and the influence of doping level of BDD on the phase composition and microstructure of the cBN coatings were studied. The nano-indentation tests showed that the hardness and elastic modulus of the obtained cBN coatings were 78 GPa and 732 GPa, respectively. The tribological properties of the cBN coatings were evaluated by using a ball-on-disc tribometer with Si3N4 as the counterpart. The coefficient of the friction and the wear rate of the cBN coatings were estimated to be about 0.17 and 4.1 × 10 7 mm3/N m, respectively, which are remarkably lower than those of titanium aluminum nitride (TiAlN) coatings widely used in machining ferrous metal. The results suggest that cBN/BDD coated Si3N4 inserts may have great potentials for advanced materials machining.  相似文献   

17.
Dry sliding wear tests on 5 wt.% copper oxide doped yttria stabilized zirconia polycrystals (CuO–TZP) composite have been performed against alumina, zirconia and silicon nitride countersurfaces at 600 °C. The influences of load and countersurface materials on the tribological performance of this composite have been studied. The friction and wear test results indicate a low coefficient of friction and specific wear rate for alumina and zirconia countersurfaces at F = 1 N load (maximum Hertzian pressure ~0.5 GPa). Examination of the worn surfaces using scanning electron microscope/energy dispersive spectroscopy confirmed the presence of copper rich layer at the edge of wear scar on the alumina and zirconia countersurfaces. However, Si3N4 countersurface sliding against CuO–TZP shows a relatively higher coefficient of friction and higher wear at 1 N load condition. These results suggest that the countersurface material significantly affect the behavior of the third body and self-lubricating ability of the composite.  相似文献   

18.
Carbon nanotubes and carbon nanofibers were grown at different temperatures on porous ceramic Al2O3 substrates with single channel geometry by means of a chemical vapor deposition technique using methane as carbon source and palladium as catalyst. Time-resolved in-situ Fourier transformed infrared spectroscopy was used for the investigation of methane decomposition for characterizing the catalyst’s performance. With increasing synthesis temperature, a structural transition from carbon nanofibers to carbon nanotubes was observed. At a synthesis temperature of 700 °C, solely carbon nanofibers were found, whereas at 800 °C a mixture of two types of bamboo-shaped carbon nanofibers were obtained, suggesting a structural transition. A synthesis temperature to 850 °C results in bamboo-shaped multi-walled carbon nanofibers and multi-walled carbon nanotubes. The carbon products and the observed structural transition were characterized by means of field emission scanning electron microscopy, high-resolution transmission electron microscopy, thermal gravimetric analysis, and Raman spectroscopy.  相似文献   

19.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

20.
Large amounts of waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of single crystal silicon ingots. Waste SiC sludge was purified by washing it with organic solvent and purified SiC powder was used to fabricate the continuously porous SiC–Si3N4 composites, using an extrusion process, in which carbon, 6 wt% Y2O3 + 2 wt% Al2O3 and ethylene vinyl acetate were added as a pore-forming agent, sintering additives and binder, respectively. In the burning-out process, the binder and carbon were fully removed and continuously porous SiC–Si3N4 composites were successfully fabricated. The green bodies containing waste SiC, Si powder and sintering additives were nitrided at 1400 °C in a flowing N2 + 10% H2 gas mixture. The continuously porous composites contained SiC, α-Si3N4, β-Si3N4 and few Fe phases. The pore size of the second passed and third passed SiC–Si3N4 composites was 260 μm and 35 μm in diameter, respectively. The values of bending strength and hardness in the second passed and third passed samples were 62.97 MPa, 388 Hv and 77.82 MPa, 423 Hv, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号