首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
Fenton工艺深度处理垃圾渗滤液中难降解有机物   总被引:14,自引:1,他引:14  
选用Fenton工艺对经过生化处理后的城市垃圾渗滤液进行深度处理.结果表明,该工艺具有氧化和混凝的双重作用,其最优工艺条件为:[H2O2]=38.8 mmol/L、[Fe2 ]=30 mmol/L、初始pH为3、混凝pH为8,反应时间60 min,H2O2为一次投加.在此条件下,COD和TOC的去除率分别达63.43%和80.58%.同时分析了各种影响因子对Fenton试剂处理效果的作用机理.  相似文献   

2.
目的研究H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间对高质量浓度制药废水的处理的影响.方法以阜新某集团公司生产制药原料排出的废水为对象,将Fenton技术衍生,设计Fenton/微波工艺,进行静态试验.结果当H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间改变时,出水COD都有很大改变.当试验用水为100 mL的制药废水时,H2O2与Fe2+的物质的量比50∶1,H2O2投加量为Qth,pH值为3,微波辐照功率为500 W,辐照时间为9 min时,COD去除率最大,可达到83.1%,出水COD在97.3~243.4 mg/L范围内.结论 Fenton/微波联合工艺作为一种Fenton技术衍生而来的工艺,虽不能使高质量浓度制药废水达到排放标准,但是可以氧化不易降解的有机物,降低后续工艺的处理难度.  相似文献   

3.
采用微波Fenton耦合超声催化内电解工艺处理垃圾压缩废水.考察了微波升温速率、Fen-ton试剂投加量、超声功率、超声时间、Fe/Cu/沸石质量比、曝气量及回流比等因素对水样COD和色度去除率的影响.结果表明,保持水样pH不变,H2O2与FeSO4投加量分别为117.6mmol/L、23.4mmol/L,在170W功率下辐射100s,升温速率为12.0℃/min,COD和色度去除率分别达到了27.14%和74.15%.调节水样pH为3.0,超声功率80W,Fe-Cu-沸石质量比为6∶3∶2,在曝气量为0.2L/min下反应90min,COD和色度去除率分别为42.38%和82.60%.在回流比为0.8下,耦合工艺出水水质稳定,COD去除率均在55%以上,最高达到62.81%;色度去除率均大于83%,最高达到94.7%.  相似文献   

4.
采用Fenton试剂法处理垃圾渗滤液处理进行试验.对比试验结果表明:常压下,p H值为6,温度30℃,每100 m L垃圾渗滤液中加入H2O2和Fe2+的量分别为0.30 m L和0.2 g,活性炭投入0.7 g,反应50 min,可以取得很高的COD去除效率,达到97.70%.  相似文献   

5.
微波辐射Fenton氧化处理络合铜废水研究   总被引:2,自引:0,他引:2  
以络合铜生产废水为研究对象,考察了H2O2投加量、FeSO4投加量、pH值、微波辐射时间、微波辐射功率等因素对微波辐射Fenton氧化法去除污染物效果的影响.分析了最优条件下单独微波、单独Fenton以及两者联用对CODCr和Cu2+的去除作用,初步探索了各影响因子的作用效果和综合反应机理.结果表明,通过单因素实验优化微波辐射Fenton氧化处理络合铜生产废水的最佳工艺条件为:30%H2O2用量为130 mL/L、FeSO4.7H2O用量为5 g/L、pH值为3.5、微波功率680 W、微波辐射时间10 min.在此条件下,微波结合Fenton氧化使CODCr和Cu2+分别由14 750 mg/L、968 mg/L下降到1 327 mg/L、55 mg/L,单独微波下降到11 563 mg/L、681 mg/L,单独Fenton氧化下降到2 537 mg/L、99 mg/L.  相似文献   

6.
目的研究UV/Fenton氧化法中各个因素对去除水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件.方法保持UV/Fenton体系的基准条件不变,通过改变H2O2投加量、Fe2+浓度、废水初始pH值、载气等试验条件,考查这些因素对UV/Fenton法处理苯酚废水效果的影响.结果UV/Fenton氧化法对苯酚废水有较好的去除效果和较高的反应速率.当废水初始pH值为3.0时,经30 min反应,苯酚去除率达到99%,COD去除率达到86%.苯酚废水COD去除率滞后于苯酚去除率.结论UV/Fenton法能够在较短的时间内去除苯酚含量,COD、H2O2投加量、Fe2+浓度对处理效果影响较大,H2O2投加量决定苯酚去除率和COD去除率,而Fe2+质量浓度是影响去除速率的主导因素.  相似文献   

7.
研究了Fenton法和UV-Fenton法对垃圾渗滤液的处理,考察了Fe SO4·7H2O投加量、H2O2/Fe SO4·7H2O比值、初始p H值和反应时间等因素对渗滤液中CODCr、氨氮的去除效果。结果表明:在Fenton氧化体系中,最佳反应条件为:Fe SO4·7H2O的投加量为0.03 mol/L,H2O2Fe SO4·7H2O比值为3,原水初始p H值为3,反应时间为90 min;在紫外(UV)辐照强度为65 uw/cm2,辐照时间为3 min的条件下,UV-Fenton反应体系下对渗滤液中有机物的去除比单一Fenton法的高。  相似文献   

8.
微波诱导过氧化氢氧化处理含油废水   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺(MIOP)处理含油废水,分别考察了活性炭种类、活性炭质量、H2O2体积、微波功率、微波辐射时间和pH等因素对处理效果的影响。实验结果表明,微波诱导氧化对含油废水COD的去除率达到86.8%。最佳处理工艺条件为:5 g活性炭与50 mL含油废水混合(固液质量比为1∶10),微波功率为480 W,辐射时间为4 min,H2O2体积为1.5 mL,FeSO4质量为0.07 g,pH为3。  相似文献   

9.
垃圾渗滤液是一种成分复杂的高浓度有机废水,若不妥善处理,会对地下水、土壤及周围环境造成严重污染.采用Fenton法和ClO_2氧化法处理垃圾渗滤液,考察了pH、药剂投加量及反应时间对COD去除率的影响,确定了最佳反应条件,并对两种方法进行了对比研究.实验结果表明:Fenton法的最佳条件为:pH=4,H_2O_2投加量为20mL/L,n(H_2O_2)∶n(Fe~(2+))=4∶1,反应时间为60min.ClO_2氧化法的最佳条件为:ClO_2投加量1 000mg/L,反应20min.在最佳条件下,两种方法对渗滤液中COD去除率分别为70.18%,46.21%.Fenton法适合在pH=4的酸性环境,ClO_2适合pH范围较广.ClO_2法的成本较Fenton法略高,但Fenton法过程中产生的污泥需要进一步处理.  相似文献   

10.
预处理+生化法+膜处理"的组合工艺是常用的垃圾渗滤液处理工艺,虽然能够快速稳定地削减渗滤液中各类污染物,但产生的渗滤液膜滤浓缩液富集了更高浓度的难降解有机物、盐分和其他无机物,难降解有机物的去除是渗滤液浓缩液处理的难题。以深圳某填埋场垃圾渗滤液膜浓缩液为研究对象,分别研究了三维电氧化、紫外芬顿(UV/Fenton)以及三维电氧化-UV/Fenton-电催化氧化组合工艺对垃圾渗滤液膜浓缩液的处理效果。在实验操作条件下,电氧化2 h,UV-Fenton处理1.5 h,电催化氧化2 h,COD、氨氮、总氮的去除率分别为97.6%、98.8%和93.5%,出水基本满足《生活垃圾填埋场污染控制标准》(GB 16889-2008)直接排放限值要求,每吨垃圾渗滤液膜浓缩液的处理成本为93.2元。  相似文献   

11.
Fenton法深度处理垃圾渗滤液的试验   总被引:5,自引:0,他引:5  
对六里屯垃圾填埋场小试采用UASB处理垃圾渗滤液,处理后ρ_(COD)为2350~2600 mg/L、ρ_(NH_4~+)-N约为1300 mg/L,存在可生化性差、C/N低等问题。在进一步生化处理前还需要物化处理.试验采用Fenton试剂氧化然后用化学试剂进行混凝处理,考察不同投加条件下的去除效果.试验结果表明,Fenton试剂氧化法与化学沉淀法联合使用对去除垃圾渗滤液中的浊度、COD和NH_4~+-N有明显的效果.当c_(Fe)~(2+)=0.03 mol/L,c_(H_2O_2)= 0.09mol/L,ρ_(PAC)=800mg/L,ρ_(KP1207B)=10mg/L时,总体去除效果较好,三者去除率分别为62%、54%、35%.  相似文献   

12.
通过实验比较了UV/TiO2/H2O2、Fenton试剂和UV/TiO2 3种高级氧化工艺对农药废水的预处理效能,表明Fenton试剂最为经济高效.优化得出Fenton试剂的最佳工艺条件是H2O2投加量为97mmol/L,Fe2 浓度为40 mmol/L.该条件下可将农药废水的COD从33 700 mg/L降至12 000 mg/L以下,其可生化性由0.2升至0.45以上.预处理后的废水经好氧生物移动床处理COD去除率可以达到85%以上;当载体表观体积降至15%时,COD去除率仍能达到80%以上,载体体积为10%时去除率只有70%左右,15%的表观体积是该载体在生物移动床中的极限体积;此时载体上的生物量超过6 000 mg/L,也说明该载体适合微生物生长且移动床工艺具有很强的抗冲击负荷能力.  相似文献   

13.
混凝-Fenton法处理垃圾渗滤液   总被引:1,自引:0,他引:1  
采用混凝预处理和Fenton深度氧化法联合处理,实验得到了PAC和FeSO4两种混凝剂的最佳投加量,在此基础上,研究了初始pH、FeSO4投加量、H2O2/Fe2+物质的量的比等因素对Fenton反应的影响。实验结果表明,在各自最佳条件下,PAC-Fenton和FeSO4-Fenton对COD的去除率可分别达到91.4%和90.3%,其中,FeSO4-Fenton法在工业应用方面更具优势。  相似文献   

14.
目的通过用混凝和化学沉淀法联合对垃圾渗滤液进行的预处理来确定出最佳工艺条件.方法通过投加混凝剂和絮凝剂对垃圾渗滤液进行混凝沉淀实验,将处理后的渗滤液再投加沉淀剂,分别以CODCr和氨氮为考察指标,根据单因素和正交实验确定实验条件.结果实验表明,混凝和化学沉淀法联合处理对垃圾渗滤液的CODCr和氨氮具有良好的去除效果,实验条件为:混凝剂(PAC)的投量为1 000 mg/L,絮凝剂(PAM)的投量为3.5 mg/L,在pH值为5.5左右进行混凝,然后对经过沉淀的上清液调节其pH值为8.5,按Mg2+、NH4+和PO43+物质的量之比为1:1:1投加沉淀剂,静置沉淀.结论对垃圾渗滤液的CODCr和氨氮的去除率分别达到52.5%和81%以上.经处理后的废水BOD5/COD值为0.63,氨氮含量为76 mg/L,降低后续生物处理负荷.  相似文献   

15.
Fenton试剂氧化处理印染废水   总被引:2,自引:0,他引:2  
采用Fenton试剂对某染袜厂两股含阳离子染料的印染废水进行了处理。考察了反应时间、双氧水用量、硫酸亚铁用量以及pH对印染废水的色度及COD去除率的影响。又通过正交实验确定了Fenton试剂处理该废水的最佳操作条件。结果表明 ,随着反应时间的延长 ,色度及COD去除率增大 ,最佳反应时间为 30min ;色度及COD的去除率随着双氧水 (30 % )的用量增加而增大 ,最佳用量为 4mL/L ;硫酸亚铁最佳用量为 30 0mg/L ;最佳 pH值为 4.0。在最佳实验条件下 ,COD浓度为 6 5 0mg/L的废水经氧化处理后可达标排放 ,COD值为 12 0 0mg/L的废水 ,需经絮凝预处理后再用Fenton试剂氧化 ,方可达标排放  相似文献   

16.
为了解决垃圾渗滤液在无外加碳源的条件下难以实现高效生物脱氮的问题,采用中试规模的A/O-MBR反应器,通过实现短程硝化反硝化去除垃圾渗滤液中的高浓度有机物和氮化物,并考察反应器系统对水质变化的适应能力以及不同进水碳氮比时的去除效果.实验结果表明:在进水氨氮质量浓度为1 500 mg/L、碳氮比为2∶1、水力停留时间(HRT)为4.21 d的条件下,COD和TN去除率均达到80%以上,说明系统实现了低碳氮比垃圾渗滤液高效生物脱氮.  相似文献   

17.
Fenton氧化与吸附法联合处理焦化废水的研究   总被引:7,自引:5,他引:7  
目的为了寻求一种行之有效的焦化废水处理新技术.方法利用Fenton氧化预处理联合活性炭吸附后续处理,以焦化废水的COD为考察指标,通过研究H2O2投加量、pH值、反应时间、[Fe^2+]/[H2O2](摩尔比)等因素对Fenton氧化预处理阶段处理效果的影响,确定Fenton氧化预处理阶段的操作条件;通过研究活性炭投加量、活性炭吸附时间、pH值等因素对后续活性炭吸附阶段处理效果的影响,确定活性炭吸附阶段的操作条件.结果实验表明,Fenton氧化-活性炭吸附联合工艺的最佳操作条件为:先在H2O2投加量为158mmol/L,[Fe^2+]/[H2O2]=1:10,初始pH=3的条件下Fenton氧化预处理30min,然后投加1g/L活性炭吸附处理30min.结论在最佳操作条件下,Fenton氧化-活性炭吸附联合工艺处理焦化废水取得了良好的效果,处理后焦化废水COD由1935mg/L降为46.4mg/L,去除率达到97.6%,为该工艺的工业化应用提供了实验依据,同时对其他工业废水的处理具有借鉴意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号