首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
顶板岩层诱发冲击的冲能原理及其应用研究   总被引:1,自引:0,他引:1  
针对顶板岩层对煤体冲击的影响作用机理,采用实验室物理模拟试验、UDEC 4.0离散元数值模拟试验、理论分析和工程实践验证这4种方法进行了研究,提出了煤岩冲击破坏和顶板岩层诱发冲击的冲能原理以及冲击破坏判别准则,并在工程实践中进行了应用和验证.根据煤岩冲击破坏动能试验和煤岩破坏的应力-应变曲线能量演化规律分析结果,具有冲击倾向性的煤岩样在载荷作用下破坏时将产生强烈震动和脆性冲击型破坏,破碎的煤块具有一定的初始动能并以一定的初速度脱离煤体,把这些煤岩样冲击破坏时碎块冲出的动能定义为该煤岩样的冲能,即冲出的能量,从而建立了煤岩冲击破坏的"冲能原理"和"冲能判别准则".通过岩板断裂震动物理模拟试验和数值模拟试验研究,得到顶板断裂过程中可产生强烈震动冲击载荷、致使煤岩破坏时的冲能、冲击危险性升高的研究结果;顶板断裂震动持续时间与顶板厚度呈线性关系,对煤体的震动损伤与顶板厚度呈乘幂关系,从极限悬顶长度的一半开始,煤体的冲击危险性显著升高,顶板岩层释放的能量与岩层强度呈对数关系;岩层运动产生的动能和释放的总能量分别与顶板厚度呈指数和乘幂关系.将顶板岩层诱发冲击矿压的机理分为处于稳定态岩层的"稳态诱冲机理"和处于运动态岩层的"动态诱冲机理"2种类型,岩层的"稳态诱冲机理"是指当顶板岩层不发生大规模破断或滑移垮落时,由岩层内部储存的弹性能的突然释放而导致的煤体冲击机理,稳态诱冲机理研究确定了影响煤岩破坏的2个重要初始参量--煤体的应力基数P.和能量基数U.,应力基数决定了破坏的条件,能量基数决定了破坏时释放能量的大小."动态诱冲机理"是指由顶板岩层发生大规模破断或滑移垮落产生的强烈震动和释放的大量冲击能等动载荷导致的煤体冲击破坏机理,分析了顶板岩层断裂和滑移的震动特性,坚硬厚层项板岩层在诱冲方面的作用主要表现在以较高频率的冲击载荷方式对煤体造成损伤;稳态岩层和动态岩层在诱发煤体冲击的时候都以动态的形式释放能量并参与到煤体破坏时的冲能当中,在满足冲能判别准则的情况下均可诱发冲击矿压,由此形成"顶板岩层诱发冲击矿压的冲能原理".基于岩体介质中能量传播规律和岩层影响冲击危险性的不同程度,提出了岩层影响下的煤体冲击危险"诱冲关键层"判别准则和诱冲关键层的判断方法,按照传播至煤体能量的大小给出了岩层的诱冲系数点Kb=E'k/Er0.和对应的能量值,用来表征岩层诱发冲击矿压的可能性大小.2个具有冲击危险的煤矿通过控制顶板岩层和控制煤体以降低"岩层-煤体"系统冲能进行冲击矿压防治的工程实践验证了本文关于"项板岩层诱发冲击矿压的冲能原理"研究结果的实用性与可靠性.  相似文献   

2.
为了解决大采深条带开采坚硬顶板工作面的冲击矿压问题,以古城煤矿2106工作面为例,采用现场分析、实验室试验、数值模拟的方法对其发生机理进行了研究.结果表明在此条件下开采时发生的冲击矿压与煤岩性质、采深、坚硬顶板厚度及顶板的周期来压有密切关系.当冲击矿压发生的煤层具有强冲击倾向性,煤层硬度系数大于3、采深900 m以上、顶板岩层坚硬且厚度大于20 m时,冲击矿压发生具有突然性和猛烈性;主要发生在顶板周期来压期间、超前支护50m范围内,此时工作面的CH4和CO气体含量同时升高.对此提出了钻屑法等预测预报的方法和煤体爆破卸压与柔性支护等治理措施.  相似文献   

3.
采用理论分析、物理相似模拟及现场实测相结合的方法,对坚硬厚层顶板群结构的破断冲击效应进行了分析.研究表明:多分层坚硬顶板群结构的破断冲击载荷在短时间内会产生较大的波动,工作面来压特征受多分层顶板垮断的联合作用;采场冲击来压强度主要与顶板赋存厚度及自身岩性特征有关,对于岩性相近的顶板岩层,厚度越大,对采场的矿压冲击影响也越剧烈,但厚层顶板垮断后的结构对其上覆顶板岩层的冲击载荷强度具有一定的缓冲.以大同矿区坚硬顶板群结构下的煤层开采为例,现场实测分析得到的工作面采场来压特征说明多分层顶板的垮断失稳有一定的随机性,但各分层顶板的单层垮断或多层同步垮断几率在整个煤层开采过程中基本保持不变.  相似文献   

4.
针对煤矿冲击地压危险性综合评价指标的不确定性和不相容性,基于集对分析方法,将多个指标合成为一个可反映冲击危险级别的联系度参数,建立了煤矿冲击地压危险性预测评价的集对分析模型.将该模型应用于富力煤矿276工作面和华亭煤矿回风顺槽掘进工作面,选用开采深度、煤层上方坚硬岩层距煤层距离、构造应力集中指数、顶板岩层厚度特征参数、煤的单轴抗压强度和煤的冲击能量指数等6项指标,分别对其冲击危险性进行了预测评价.计算结果与工程实践符合,表明所建立的集对分析模型能够合理评价区域冲击危险等级.  相似文献   

5.
离层注浆控制冲击矿压危险机理探讨   总被引:3,自引:0,他引:3  
煤层上覆坚硬厚层岩层组成的主关键层对冲击矿压的发生具有强烈的影响,主关键层岩层的剧烈活动是冲击矿压发生的集中区域,而且震级也高;冲击矿压的发生需要煤层及其周围岩层中聚集大量的弹性能外,还需要主关键层破裂等释放的外部能量;该外部能量与岩层厚度的平方、抗拉强度的2.5次方成正比;破断中心距巷道工作面越近、释放的能量越大,传播到巷道工作面处的能量越大,越容易引发冲击矿压。因此,可采用覆岩离层注浆等技术手段保证覆岩主关键层的长期稳定,消除主关键层岩层破断引发的冲击矿压危险。  相似文献   

6.
三河尖煤矿坚硬顶板对冲击矿压的影响分析   总被引:12,自引:0,他引:12  
顶板岩层结构,特别是煤层上方坚硬、厚层砂岩顶板是影响冲击矿压发生的主要因素之一。通过实验研究、现场实测、冲击矿压现象分析,说明了顶板坚硬岩层,特别是顶板的关键层运动、破断对冲击矿压的发生有巨大的影响,掌握顶板的运动规律,并对其进行监测,可达到预测预报冲击矿压危险的目的。  相似文献   

7.
煤层厚度变化区域矿震活动规律研究   总被引:1,自引:0,他引:1  
为更有效地预防采掘期间深部煤层分叉或厚度变化区域冲击矿压的发生,以某矿回采工作面为工程实践背景,基于矿震活动在能量释放与震动频次方面的变化特征及在空间上的分布规律,分析了煤层分叉及煤层厚度变化对冲击矿压的影响。结果表明:在大能量矿震发生前,日震动频次连续处于高位而日释放能量较长时间维持低水平;在煤层厚度变化区域,矿震活动活跃,容易发生大能量矿震。通过对矿震进行"时间-空间"分析,可以确定矿震集中区域和能量积聚时间段,从而可对煤层厚度变化影响区域进行有针对性的卸压防冲工作。  相似文献   

8.
直接顶厚度对回采巷道稳定性影响的数值模拟研究   总被引:1,自引:0,他引:1  
当回采巷道沿煤层顶板或底板布置时,由于煤层一般较顶底板软弱,因此,巷道围岩的矿压显现特征主要表现为两帮煤体的变形、破坏等现象,巷道易发生两帮煤体沿层理向巷道空间挤出的现象,并进而产生破碎、松动等现象.这与巷道上覆岩层的应力有着密切的关系.本文运用RFPA软件,分析了回采巷道上覆软弱直接顶厚度对巷道稳定性、巷道围岩应力分布与破坏情况、巷道围岩破裂部位与破裂范围的影响.通过对不同直接顶厚度影响下的巷道围岩稳定性分析,得出直接顶厚度与巷道围岩稳定性之间的数值关系,并分析了直接顶厚度对回采巷道稳定性的影响因素,这为煤矿回采巷道的开挖与支护提供一定的理论基础.  相似文献   

9.
当回采巷道沿煤层顶板或底板布置时,由于煤层一般较顶底板软弱,因此,巷道围岩的矿压显现特征主要表现为两帮煤体的变形、破坏等现象,巷道易发生两帮煤体沿层理向巷道空间挤出的现象,并进而产生破碎、松动等现象.这与巷道上覆岩层的应力有着密切的关系.本文运用RFPA软件,分析了回采巷道上覆软弱直接顶厚度对巷道稳定性、巷道围岩应力分布与破坏情况、巷道围岩破裂部位与破裂范围的影响.通过对不同直接顶厚度影响下的巷道围岩稳定性分析,得出直接顶厚度与巷道围岩稳定性之间的数值关系,并分析了直接顶厚度对回采巷道稳定性的影响因素,这为煤矿回采巷道的开挖与支护提供一定的理论基础.  相似文献   

10.
煤岩动力灾害的实质是能量积聚与耗散的自组织临界过程,当煤岩体中所积聚的弹性能达到其极限冲击能时,就会发生冲击矿压.实验室研究发现,弹脆性煤体是能量积聚与耗散的主体,顶板关键层(坚硬厚层砂岩顶板)的运移则会导致能量积聚与耗散,加速失去动态平衡.以煤岩冲击倾向性与顶板强度及厚度的关系为基础,依据能量积聚与耗散理论,提出了煤岩动力灾害的强度弱化机理,即通过钻孔卸压与深孔卸压爆破来弱化煤岩体的强度,降低煤岩体的聚能能力,释放煤岩体中所积聚的大量弹性能,使得煤岩体中所积聚的弹性能达不到最小冲击能,同时利用电磁辐射监测仪来检验煤岩体强度弱化治理的效果,以达到消除或降低冲击危险的目的.通过在三河尖煤矿9202高冲击危险工作面的生产实践,充分证明了这种技术的有效性.  相似文献   

11.
由于围岩破坏过程的复杂性,煤矿开采诱发地震成因比天然地震成因更为复杂.结合徐州某煤矿矿震灾害实例,分析煤矿开采诱发地震的成因及矿震波的特性,提出防治矿震危害的措施;计算冒落岩石的重力势能、顶板岩石冒落时冲击气浪的能量和矿震震级,并将计算的震级与地震台网测定的结果进行比较后发现误差较小,即相对误差为3.7%.研究结果表明:矿震波形呈现周期大、衰减快以及前后无关联的特征;虽然矿震可以分为顶板冒落、顶板开裂、矿柱冲击和断层剪切等类型,但实际上大多是多种类型的复合,围岩应力分布复杂;矿震的过程就是能量的释放过程.矿震成因非常复杂,如何有效利用数值预测技术预测矿震还有待进一步研究和探讨.  相似文献   

12.
In order to reveal the dynamic process of hard-thick roof inducing rock burst, one of the most common and strongest dynamic disasters in coal mine, the numerical simulation is conducted to study the dynamic loading effect of roof vibration on roadway surrounding rocks as well as the impact on stability. The results show that, on one hand, hard-thick roof will result in high stress concentration on mining surrounding rocks; on the other hand, the breaking of hard-thick roof will lead to mining seismicity, causing dynamic loading effect on coal and rock mass. High stress concentration and dynamic loading combination reaches to the mechanical conditions for the occurrence of rock burst, which will induce rock burst. The mining induced seismic events occurring in the roof breaking act on the mining surrounding rocks in the form of stress wave. The stress wave then has a reflection on the free surface of roadway and the tensile stress will be generated around the free surface. Horizontal vibration of roadway surrounding particles will cause instant changes of horizontal stress of roadway surrounding rocks; the horizontal displacement is directly related to the horizontal stress but is not significantly correlated with the vertical stress; the increase of horizontal stress of roadway near surface surrounding rocks and the release of elastic deformation energy of deep surrounding coal and rock mass are immanent causes that lead to the impact instability of roadway surrounding rocks. The most significant measures for rock burst prevention are controlling of horizontal stress and vibration strength.  相似文献   

13.
Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts will be shown.  相似文献   

14.
桩端岩溶顶板地震动力特性的振动台试验研究   总被引:1,自引:1,他引:0  
为研究溶洞顶板在桩端荷载及地震共同作用下的动力特性和破坏特征,依托渝黔铁路复线周家湾大桥桩基工程,基于分离相似设计方法确定岩质材料、模型桩和地震波的主控参数,通过19组配比试验得到振动台试验用的岩体相似材料配比指标,最后考虑不同顶板厚度及溶洞直径的影响开展岩溶桩基小型振动台模型试验.结果表明:溶洞的存在改变模型的局部基频及动力特性,对地震波的传递起到阻碍及能量消散作用;波的频谱变化与上部荷载大小无直接关系,桩端荷载和地震共同作用下产生的桩端裂隙造成地震波整体幅值的下降,引起模型基频的变化;模型内部裂纹随地震波加速度的增强而增多,造成阻尼比逐渐增大,使得振动主频降低;同类型地震波之间仅幅值有所差别,不同类型地震波作用下的频谱分布差异较大;各测点的应变均随地震峰值的增加而增大,溶洞直径较小时顶板临空面处易发生剪切破坏,而溶洞直径较大时表现为整体的冲-剪破坏.  相似文献   

15.
基于波动理论的粘弹性人工边界内源波动有限元分析   总被引:1,自引:0,他引:1  
在地震激励作用下,当地基为无限介质时能量将逸散到无穷远处而耗散.目前广泛采用的无质量固定边界模型引入了不真实的反射地震波,无法模拟地震波的真实传播过程.基于波动理论采用粘弹性人工边界模拟地震波内源波动的远域能量逸散效应,并将计算结果与固定边界模型进行比较.计算结果表明粘弹性人工边界削弱了固定边界引起的荷载放大效应,能更...  相似文献   

16.
坚硬顶板型冲击矿压灾害防治研究   总被引:13,自引:2,他引:13  
针对兖州矿区济三煤矿6303工作面的冲击矿压问题,分析了冲击矿压发生的主要原因及影响因素.根据现场条件和数值模拟分析,提出了采用顶板爆破解除冲击矿压危险的技术措施,并确定了爆破参数.采用矿用钻孔窥视仪并配合电磁辐射法和钻屑法对爆破进行了效果检验.结果表明,通过顶板爆破措施可以破坏工作面上方坚硬厚层砂岩顶板的完整性,提前释放顶板聚集的弹性能,减弱和消除了工作面的冲击矿压危险,胜,保证了工作面的安全生产.现场实践证明,该项技术对具有坚硬顶板型冲击矿压的防治效果明显.  相似文献   

17.
复合巷道支护是国内外巷道支护的难题之一,而复合巷道在我国煤矿巷道中有着广泛的分布.煤巷的开挖位置一旦确定,其围岩结构状态就不再改变,岩层结构上的薄弱部位即为巷道的关键部位.巷道顶板离层破坏影响因素很多,通过对煤层直接顶、老顶的厚度以及岩体的强度等分析,确定其对顶板离层的影响程度,并结合力学分析,建立顶板离层力学模型,计算出顶板离层深度,另外还利用FLAC3D模拟软件,模拟复合巷道在不同环境下老顶与直接顶的变形量,从而得出引起顶板离层破坏的影响因素.  相似文献   

18.
为了实现对深井采煤工作面的冲击地压灾害预防,采用微震走时成像技术,监测采煤工作面的应力异常.根据系统要求布置传感器台网,实现工作面全覆盖;采用层状模型分析地震波传播路径,计算地震波传播速度,利用子空间分阶段求解的方法进行反演,实现对监测区域的地震波走时层析成像;结合地震波速度和岩石所受应力的关系,达到研究采煤工作面应力异常的动态分布及变化特征的目的.试验结果表明:工作面推进时,煤层顶板高应力异常达到最大,工作面前方的高应力异常区动态变化范围较大,工作面后方存在较稳定的地震波低速异常,利用微震成像技术可以有效地监测地震波速度异常区域的范围及变化特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号