首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are the most difficult problems for constructing the system. Based on the current 3D GIS technique, some basic problems in establishing the system are discussed in this paper, including 3D spatial data model, 3D geological modeling, and visualization of 3D geological data. A kind of 3D vector data model based on boundary representation for geological object and its topology was developed in order to model and visualize complex geological structures. In addition, some key techniques are pointed out for further study.  相似文献   

2.
Based on the study of the slope with gently granular structure in Xingqiao open mine, a new safety cleaning bank mode for steep slope mining was developed, including setting up dint cut, and forming natural retaining wall based on the character of gentle incline slope. It can effectively eliminate the impact of sliding body on the bottom working place and slope body, reduce the dilution of ore, keep rainwater from upper steps away, decrease influence of the weak intermediate layer, and cut cost of disposal waste rock. The safety and reliability of the mode were analyzed and verified from 3 aspects: static load calculation, ANSYS simulation of dynamic loading and spot experiment. The result of static loading calculation shows that the retaining wall can support accumulation and extrusion of granular body, and the glide or overturn disaster will not take place. The simulations of dynamic loading show that the retaining wall remains stable until sliding body collapses from 360 m (10 sublevels). Only one new safety cleaning bank in each 1 - 5 sublevels can fully meet the need of engineering. The new mode sustains steep slope mining, increases the angle of ultimate slope, and reduces invalid overburden amount of rock by 3%-5%. The result of spot experiment has verified the exactness of the above calculations and simulations.  相似文献   

3.
1 Introduction Rock slopes usually contain many structural surfaces in geological engineering. However, the mechanism of rock slope failure has not been profoundly understood. Therefore, it is important to deeply analyze the failure mechanism and stability of such rock slopes through experimental investigation and numerical simulation. Previous site investigations show that water is one of the key factors to induce landslide[1―5]. “No landslide without water” vividly points out the importa…  相似文献   

4.
The capacity of energy absorption by fault bands after rock burst was calculated quantitatively according to shear stressshear deformation curves considering the interactions and interplaying among microstructures due to the heterogeneity of strain softening rock materials. The post~peak stiffness of rock specimens subjected to direct shear was derived strictly based on gradientdependent plasticity, which can not be obtained from the classical elastoplastic theory. Analytical solutions for the dissipated energy of rock burst were proposed whether the slope of the post-peak shear stress-shear deformation curve is positive or not. The analytical solutions show that shear stress level, confining pressure, shear strength, brittleness, strain rate and heterogeneity of rock materials have important influence on the dissipated energy. The larger value of the dissipated energy means that the capacity of energy dissipation in the form of shear bands is superior and a lower magnitude of rock burst is expected under the condition of the same work done by external shear force. The possibility of rock burst is reduced for a lower softening modulus or a larger thickness of shear bands.  相似文献   

5.
Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.  相似文献   

6.
In order to study the interaction between transverse isotropy rock mass and supporting structure,the laboratory tests for rock sampled from the slope at expressway project were carried out,and the parameters of elasticity for transverse isotropic rock were determined by the uniaxial compression tests for rock sample with different strike of stratification plane.Then,based on the relationship of stress-stain for transverse isotropic rock mass,the analytical model was established for the interaction between transverse isotropic rock mass and frame beam with pre-stressed anchor cable.Furthermore,the conception of the best anchorage-angle in pre-stressed anchor cable was proposed.At last,the parameters of the interaction between transverse isotropy rock mass and frame beam with pre-stressed anchor cable were investigated by finite element method,and the best anchorage-angle in pre-stressed anchor cable was obtained.The rules of the influence of the directivity of stratification plane on supporting structure were determined.The results show that the analytical model and numerical method on the design of pre-stressed anchor cable with frame beam supporting for transverse isotropy rock slope are reasonable and reliable in practical engineering design.  相似文献   

7.
3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities containing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geological exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of modeling approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling technique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound comprehension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.  相似文献   

8.
We investigated the combined influence of joint inclination angle and joint continuity factor on deformation behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws i...  相似文献   

9.
Using resistivity as index and referring to the law about effect of slope to resistivity,the apparent resistivities of geophysical model concerned with unsteady rock type slope failure were calculated systematically by using the boundary integral equation method.After studying the feature of resistivity response of slope failure,the variety of resistivity during evolution of slope from steady to unsteady was found and the characteristics of resistivity response about slope failure was concluded.These make electrical exploring method for detecting the slip plane or structural plane of slope failure,evaluating the stability of the slope,and forecasting slope failure become true.  相似文献   

10.
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC3D model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.  相似文献   

11.
The mechanisms for rock bursts occurrences in fold zones are complex, and the redistribution of in-situ stresses is closely related to the complexity of the structures. Analysis of the geomorphology of fold structures and changes of coal thickness can help identify zones prone to rock bursts to improve safety and productivity in coal mines. This study investigated the distribution characteristics of fold structures in coal seams in fold zones in four mines in northwest China. Geometrical characteristics of fold structures in coal seams and changes of coal thickness were analysed, based on comprehensive evaluation indexes,such as the length–width ratio of folds, interlimb angle, ratio P1 of projected width of fold limbs to that of the hinge zone, curvature ratio P2, the maximum curvature and amplitude. The statistical analysis of the four coal mines shows that the length–width ratio of folds changed from 0.78 to 2.03 and the maximum curvature of cross sections of folds was less than 0.04. The curvature ratio of cross section of a fold in the structure was no more than 1.4 and the interlimb angles of cross sections of 89% of folds were larger than 150°. Gentle fold structures were dominant and the specific geological morphologies were domes or basins. The isopleth of coal thickness above the coal mines showed a fluctuation trend similar to the contour line of the floor of coal seams. The coal thickness in an anticline area was smaller than that in the neighboring syncline area. Therefore, the overall variation of coal thickness in the mining areas was likely to have a relation with the direction of the regional principal stress.  相似文献   

12.
Landslide prediction is one of the most important aspects of prevention andcontrol for geological hazards and the environmental protection. In order to study thenonlinear methods for landslide prediction, the synergetic-bifurcated model of predictingthe timing of slope failure is established by combining Synergetics with Bifurcation Theorybased on single-state variable friction law in this paper. The synergetic effects andbifurcated process of the factors in the slope evolution can be characterized in the model.Taking the Xintan Landslide as an example, the prediction of landslide is carried outbased on the model suggested.  相似文献   

13.
The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D ) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the right bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.  相似文献   

14.
节理岩体弹塑性动态有限元分析   总被引:1,自引:0,他引:1  
 Aim To study the elastic-plastic dynamical constitutive relations about a jointed rock mass under explosion load and its computer simulation. Methods Stress history is taken into account and stresses will follow changes in time during a period of explosion load. According to the principle of static force balance, the corresponding nodal concentrated force is calculated and the nodal displacement is counted. The elastic-plastic dynamic finite element equations are thus obtained. Results A finite element method is given for a jointed rock mass under explosion load. Conclusion The problem of large plastic deformation for jointed rock mass on blasting was efficiently resolved through dynamic finite element analysis and the range of damages by blasting simulated, and this pushes forward the problem to engineering practice.  相似文献   

15.
Cut slope reinforcement technique in open-pit mines   总被引:1,自引:0,他引:1  
The design and practice in supporting the cut slope of an open-pit mine were introduced, in which the high pressure grouting method was used in reinforcing the weak formation in the slopes. Based on a detailed geological survey of the slope, a theoretical analysis was carried out, and the design parameters were proposed, where the Tresca or Mohr-Coulomb yield criteria was employed. A patent technology, named “Technology of high pressure and multiple grouting in different levels within a single hole“, was employed in the construction. Anchor bars were also installed as grouting proceeds. This method combines anchoring and grouting comorehensively and was found successful in practice.  相似文献   

16.
Sloping-and-shaking——Multiway merging and sorting   总被引:1,自引:0,他引:1  
Most traditional merging and merging-based sorting algorithms are based on 2 sorters or 2 comparators A new merging technique is developed, namely sloping-and-shaking multiway merging, and a corresponding mul-tiway sorting method based only on k-sorters is proposed The sloping-and-shaking merging algorithm merges k sorted lists into one, where k can be any prime number The merging process is not a series of recursive applications of 2-way morging It sorts the keys on the m × k plane in vertical and horizontal directions, then along sloping lines with various slope rates step by step Only k-sorters are needed in the merging or sorting process. The time needed to merge ksorted lists, with m of each, is ( k + [log2( m / k) ]) tk, and the time for sorting N keys is (1 + (p - 1) k + 1/2( p -1) (p - 2)[ log2k])tk, where p - logkN, and tk is the time to sort k keys. The proposed algorithms can be implemented either by hardwared sorting networks, or on general purpose parallel and vector machines The tradition  相似文献   

17.
英文文摘     
《新疆石油学院学报》2014,(1):I0001-I0006
Abstract: The Jurassic Xishanyao Formation of oil and gas exploration and development in 5antanghu Basln mainly concentrated in Malang depression, have found a number of oil and gas fields and oil and gas bearing structure, according to the exploration experience, the modern oil and gas geological theory as the guide, through the anatomical known reservoir, hydrocarbon source rock, reservoir, cap etc,are analyzed systematically,which are basic elements for oil and gas reservoir forming. Research shows that, Xishanyao Formation lithologie reservoir is controlled by the tectonic background and sedimentary facies, developed in the study area, two nose structure zone, adjacent to oil generating sag, on the basis of good reservoir and large nose background theory of hydrocarbon accumulation, Niujuanhu nose uplift in south slope and Mazhong construction in West slope region of Malang depression, Eastern Xixiagou and Mabei slope belt have favorable hydrocarbon accumulation conditions, with a broad prospect for exploration, which is the favarable area for the nert exploration and development.  相似文献   

18.
1 Introduction The damage or failure of faulted rock slope is a quite difficult problem in geotechni- cal engineering, and attention has been drawn from researchers for a long time. Apart from the toppling damage of steep slopes, most of the failure pattern of faulted rockslopes is shear-typed. The failure process of such a slope includes: initiation and devel- opment of a single micro-crack, breakthrough of two or more cracks, formation of fail- ure zones, and even shear damage in large scale…  相似文献   

19.
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions (FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maxi- mum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.  相似文献   

20.
Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheological properties.Then,the concept and the calculation procedure of the safety factor are established at different time.Making use of finite element software ANSYS,the most dangerous sliding surface of the slope can be obtained through the strength reduction technique.According to the dynamic safety factor based on rheological mechanism,a good forecasting could be presented to prevent and cure the landslide.The result shows that the couple analysis reveals the process of the slope failure with the time and the important influence on the long-term stability due to the rheological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号