首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以β-丙氨酸和尿素为燃料,采用溶液燃烧法在低温450℃下合成制备了Ca3Al2O6:Eu3+荧光粉。样品的发射光谱由位于594 nm、617 nm、653 nm及700 nm处的4组线状峰构成,分别对应Eu3+的5D0→7Fj(j=1~4)特征跃迁,其中617 nm处的峰最强,样品呈现红色发光。考察了Eu3+掺杂浓度对晶体结构和发光性能的影响。结果呈示:随着掺杂浓度的增加晶格常数逐渐减小,[O—Al—O]的对称伸缩振动Raman峰蓝移;在低掺杂浓度时荧光强度逐渐增大,掺杂6%时达到最大,之后出现浓度猝灭现象,猝灭机制为交互作用;Eu3+的5D0→7F2与5D0→7F1跃迁强度比随着掺杂浓度的增加逐渐增大,掺杂的Eu3+主要取代处于非对称中心的Ca2+。  相似文献   

2.
采用水热法制备了四方相YVO4:Eu3+纳米荧光粉,研究了YVO4:Eu3+晶体结构、发光特性及荧光温度特性.XRD结果表明合成的YVO4:Eu3+荧光粉与基质YVO4的晶相结构一致.发光光谱表明,在398 nm激发下显示了Eu3+离子的4f-4f特征跃迁红光发射.在303~623 K温度区间,发光峰位没有发生变化,各特征峰强度均显示出温度依赖性.采用荧光强度比技术,分别基于热耦合能级到相同基态的跃迁(5D1→7F1和5D0→7F1)、热耦合能级到不同基态的跃迁(5D1→7F1和5D0→7F4)及到Stark能级(5D0→7F4(1)和5D0→7F4(2))跃迁,研究其荧光温度特性.结果表明,在623 K时基于热耦合能级到相同基态跃迁(5D1→7F1和5D0→7F1)可获得最大测温灵敏度为2.55×10-3 K-1,大于基于热耦合能级到不同基态能级(5D1→7F1和5D0→7F4)时获得的最大灵敏度为1.08×10-3 K-1;而基于热耦合能级到Stark能级跃迁(5D0→7F4(1)和5D0→7F4(2))可在303 K时获得最大灵敏度为5.03×10-4 K-1.说明基于热耦合能级荧光强度比技术更适合用于高温条件,测温灵敏度决定于热耦合能级差,与到达基态能级无关.而低温条件下,基于Stark能级荧光强度比可获得较高的测温灵敏度,测温灵敏度决定于Stark能级差.  相似文献   

3.
利用金属(Au-Al)作为催化剂,基于固-液-固生长机制,在单晶Si(100)表面生长出高密度、大面积的Si纳米线(SiNWs).为了提高SiNWs∶Eu3+的红光发射强度,高温下利用Y3+、Eu3+共掺杂Si纳米线,制备了荧光纳米材料SiNWs∶Eu3+,Y3+.利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和荧光光谱仪研究了该材料的物质特性.结果显示,在最佳激发波长为395 nm时,SiNWs∶Eu3+,Y3+荧光纳米材料最强荧光波长为619 nm(5D0→7F2).同时还出现了 576 nm(5D0→7F0)、596 nm(5D0→7F1)、658 nm(5D0→7F3)和708 nm(5D0→7F4)四条谱带.当Y3+掺杂摩尔比例为2.5%时,Eu3+红光发射强度较未掺杂Y3+时提高了约110%.分析认为,Eu3+会占据Y3+的两个位置:C2位和S6位.而C2位因缺少反演对称性,电偶极输运是允许的,所以对5D0→7F2态跃迁起到了增强的作用.此外,波长为619 nm处的红光发射峰值半高宽由未掺杂Y3+时的10.2 nm降低到了 7.2 nm,有利于提高样品在荧光检测中的灵敏度和分辨率.  相似文献   

4.
采用传统工艺方法制备以YAG:Eu3和Eu2 O3两种方式掺杂Eu3+的系列SiO2-NaF-YAG系氟氧化物玻璃.研究Eu3+离子浓度对玻璃发光强度的影响;采用XRD、红外光谱和荧光光谱研究Eu3+离子掺杂的玻璃的结构和发光性能.XRD谱表明样品为非晶态玻璃;红外光谱的研究结果表明:玻璃是以硅氧四面体网络结构为主;发射光谱研究结果表明:发射峰来自于Eu3+的5D0→7F0、5 D0→7F1和5D0→F2跃迁,614 nm处的特征发射峰最强.YAG∶Eu3+形式掺杂的玻璃的发光性能较好,且Eu3+周围的晶格场环境具有较高的对称性.在掺杂浓度0.15% ~1.0%范围内没有发生浓度淬灭现象.  相似文献   

5.
采用高温固相法合成Mg2-xSnO4∶Eu3+x系列橙红色发光粉.用X射线衍射分析测定Mg2-xSnO4∶Eu3+x荧光粉的晶体结构,用F-4600荧光分光光度计测定其激发光谱和发射光谱.结果表明:Mg2-xSnO4∶Eu3+x荧光粉属于正交晶系,在250~370 nm是一个很宽的激发峰,它属于O-Eu的电荷迁移带和Eu3+的f-f高能级跃迁吸收.发射光谱由588 nm、595 nm、598 nm、617 nm4个主要发射峰组成,它们分别属于Eu3+的5D0-7F1(588 nm,595 nm,598 nm)和5D0-7F2(617 nm)跃迁,以5D0-7F1跃迁为主.具体研究激活剂Eu3+的掺杂量对Mg2-xSnO4∶Eu3+x发光粉发光性能的影响.结果表明Eu3+的最佳掺杂浓度为7%.  相似文献   

6.
钠钙硅普通玻璃是现在应用最广的一种玻璃,特别是用在建筑物上,研究稀土掺杂钠钙硅玻璃发光性能有实际意义。利用高温熔融法制备了Eu3+掺杂钠钙硅系发光玻璃。测试了不同浓度Eu3+掺杂下钠钙硅系玻璃的激发光谱、发射光谱,分析了Eu3+掺杂浓度对其发光性能的影响,并研究了稀土离子Tb3+、Dy3+的敏化作用对玻璃发光特性的影响。结果表明:在掺杂浓度0.1 mol%~1.0 mol%范围内没发现浓度猝灭现象;Eu3+掺杂钠钙硅玻璃用394 nm(7F0→5L6)激发时主要有5个发射带集中于(5D0→7F0-4)跃迁,对应的发射峰分别为577 nm,590 nm,611 nm,652 nm,702 nm;等摩尔量的Dy3+掺入对玻璃的发光起到敏化作用,Tb3+与Eu3+共掺时,由于Tb3+自身发光分散了激发Eu3+发光的能量从而降低Eu3+特征发射强度。  相似文献   

7.
利用柠檬酸溶胶凝胶法合成了绿色发光材料γ-LiAlO2:Tb3+。用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光光谱(PL)等测试手段,研究了助熔剂H3BO3对γ-LiAlO2:Tb3+的物相、形貌和发光性能的影响。结果表明,样品仍为四方晶系,在238nm的紫外激发下,跃迁发射峰位于489nm,542nm,548nm,584nm和620nm,分别对应于Tb3+的5 D4→7F6,5 D4→7F5,5 D4→7F4和5 D4→7F3的能级跃迁。硼酸的加入,有利于样品荧光和形貌的改善,其最佳掺杂摩尔浓度为1.5%。  相似文献   

8.
采用高温固相法制备新型Ca2La8Si6O26:Eu红色荧光粉,通过使用X射线衍射、相对亮度仪以及荧光光谱仪对制备的样品进行测试。结果表明:合成的荧光粉主晶相为Ca2La8Si6O26,并且可被394nm的近紫外光和464nm的蓝光有效激发,产生红光发射,主发射峰位置位于614nm(5 D0→7F2)。通过合成制度的研究,确定Ca2(La0.7Eu0.3)8Si6O26红色发光粉的最佳煅烧合成温度为1 400℃,Ca2(La1-xEux)8Si6O26中Eu3+的最佳制备浓度x=0.3。采用4.5%(摩尔分数)Li2CO3作为助熔剂,或添加0.05的Bi 3+离子作为敏化剂,可有效提高1 400℃煅烧的Ca2La8Si6O26:Eu的发光性能。并且还通过改变基质阳离子进行改性,发现阳离子为Ca2+时,发光性能最好。  相似文献   

9.
采用高温固相法分别制备Eu2+和Eu3+掺杂的Sr2MgSi2O7荧光粉.在356nm近紫外光激发下,Sr2MgSi2O7:Eu3+荧光粉呈多峰红光发射,主峰位于590nm、615nm、650nm和700nm,分别对应于Eu3+离子5D1→7FJ(J=1,2,3,4)能级的跃迁.在371nm近紫外光激发下,Sr2MgSi2O7:Eu2+荧光粉发射峰介于425~550nm之间,呈蓝光发射,主峰位于476nm,对应Eu2+的4f65d1→4f7跃迁.随着Eu2+浓度的增大,发射峰强度先增大后减弱.  相似文献   

10.
YF3:Eu^3+发光纳米束的制备与性能研究   总被引:2,自引:0,他引:2  
在CTAB辅助的水热条件下制备出YF3Eu3+纳米柬材料.XRD分析表明:样品为结晶良好的正交相YF3.TEM照片表明:所得样品直径为250nm,长度约为1000nm的YF3:Eu3+纳米束,且纳米束是由直径为20nm,长度为100nm的纳米晶自组装而成.SEAD显示所得样品为单晶结构.光谱测试表明样品的最强发射峰位于591 nm处,为Eu3+的特征橙红光发射.对应Eu3+的5D0→F1的磁偶极跃迁.  相似文献   

11.
采用高温固相法合成系列Cao.7Sro.18-1.5x(WO4)0.5(MoO4)0.5:0.08Eu^3+,xTb^3+红色荧光粉,对其晶体结构和荧光性质进行X射线衍射(XRD)、荧光光谱(PL)表征.确定荧光粉的合成条件,同时研究共激活剂Tb^3+和助熔剂H3BO3对荧光粉光谱性能的影响.结果表明:900℃焙烧2h荧光粉发光性能较好,共激活剂Tb^3+和助熔剂H,BO,较明显增大荧光粉的发光强度.所制备的荧光粉均可以被近紫外光(395nm)和蓝光(465nm)有效激发,发射峰位于616nm(Eu^3+的5D0→7F2跃迁).  相似文献   

12.
采用反应条件温和的水热法制备Li+掺杂的YBO3:Eu3+荧光粉。通过掺入不同量的Li+研究其对荧光粉YBO3:Eu3+的物相结构、微观形貌及光致发光特性的影响。用X射线衍射(XRD),场发射扫描电镜(FESEM),荧光分光光度计及X射线能量色散谱仪(EDS)等手段表征材料性能。结果表明:Li+掺杂能够提高荧光粉YBO3:Eu3+的发光强度,最大能提高近20%。发光增强与Li+掺杂量的多少有关,同时也可能与Li+改变YBO3晶体场环境有一定关系。  相似文献   

13.
采用高温固相法合成了系列LaSrZnNbO6:Bi3+,Sm3+荧光粉,并对其发光性质以及Bi3+、Sm3+离子间的能量传递机理进行了研究.结果显示,当以Bi3+1S03P1激发位置(338 nm)激发Bi3+和Sm3+共掺杂LaSrZnNbO6荧光粉时,在LaSrZnNbO6荧光粉的发射光谱中同时出现了Bi3+和Sm3+的发射峰,表明在LaSrZnNbO6基质中存在Bi3+→ Sm3+的能量传递.经计算, Bi3+离子和Sm3+离子间的能量传递效率可达到86.9%.通过改变Bi3+离子和Sm3+离子的掺杂浓度可以使LaSrZnNbO6荧光粉的CIE色坐标由蓝光区域移动至粉白光区域,表明通过调节掺杂浓度可制备出颜色可调谐的荧光粉.  相似文献   

14.
采用Gd2O3、Dy2O3、H2SO4和尿素为实验原料,通过均相沉淀法合成了Gd2O2S:Dy3+荧光粉。利用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和光致发光(PL)光谱对合成的粉体进行了表征。XRD分析表明:前驱体在氢气气氛下900℃煅烧2h能转化成单相的Gd2O2S粉体。FE-SEM观察显示:Gd2O2S粉体形貌为近球形,平均粒度大小为300~500nm。PL光谱分析表明:在270nm紫外光激发下,Gd2O2S:Dy3+荧光粉的主次发射峰分别位于579和488nm,分别归属于Dy3+的4F9/2→6 H13/2和4F9/2→6 H15/2跃迁,这两个跃迁均具有e单指数衰减行为。Dy3+的猝灭摩尔分数是1%,(Gd0.99,Dy0.01)2O2S荧光粉的色坐标和色温分别为(0.308,0.379,0.313)和6 464K。  相似文献   

15.
采用机械力化学法与热分解相结合的方法制备了ZnO:Eu3+,Li+纳米粉末,用SEM、XRD、TG-DSC、UV-Vis、FL等检测手段对样品进行了表怔。结果表明:Eu3+和Li+成功掺入ZnO基质中;样品颗粒分布均匀,粒径为50nm,其发射主峰位于611nm处;其荧光性能与热处理温度及Eu,Li的掺杂比例密切相关。  相似文献   

16.
采用高温固相法制备了Gd2O2S:Yb3+,Ho3+上转换发光材料,并研究了激活剂Ho3+和敏化剂Yb3+之间配比、烧结的温度和烧结时间对上转换发光材料发光性能的影响,得到了最佳离子配比、烧结时间与烧结温度,用XRD、SEM、荧光光谱等对样品进行了表征.采用快进快出的制备工艺,得到的上转换发光材料尺寸约为4μm,粒度均一,具有明显的六方晶形.Gd2O2S:Yb3+,Ho3+在Ho3+/Yb3+摩尔掺杂比为0.5:18,1150℃条件下烧结2h时,发光最强.该粉体在980nm红外光照射下发出耀眼的绿光,光谱峰值位于544nm和548nm两个发射峰,对应于Ho3+离子的5F4,5S2→5I8跃迁.在1064nm红外光照射下,光谱峰值位于548nm处的主峰,对应于Ho3+离子的5S2→5I8跃迁.  相似文献   

17.
采用改进的共沉淀法合成掺Eu3+铝酸锌荧光粉。对产物进行X射线衍射和发光性能分析。X射线衍射分析结果表明,在Eu3+掺杂质量分数低于5%时,掺Eu3+铝酸锌的结晶质量高;但当Eu3+掺杂质量分数高于5%时,会导致晶体结构缺陷的数目增加,从而引起结晶质量下降。不同掺杂浓度的荧光粉的发射光谱显示,当掺杂质量分数高于5%时,会出现浓度猝灭现象。与固相反应法相比,共沉淀法的猝灭浓度有明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号