首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了荷叶在不同pH值、不同浸润时间的酸(H2SO4)、碱(NaOH)、乙醇(C2H5OH)和丙酮(C3H6O)溶液浸泡后润湿性能的变化情况。结果表明:试验条件下,溶液酸碱度、浸润时间对荷叶与水的接触角无明显影响;对试验前、后荷叶样本扫描电镜(SEM)和场发射环境扫描电镜(ESEM-FEG)图片进行对比分析发现:荷叶表面微观形貌及表面蜡晶形貌均未见明显变化。对荷叶表面化学成分作用分析结果显示,酸、碱溶液与荷叶表面脂类成分(蜡晶)间的惰性反应是荷叶对酸、碱溶液不润湿的主要原因。经乙醇和丙酮溶液处理后的荷叶样本表面迅速失去超疏水特性而呈现亲水特征,其原因是荷叶表面脂类成分与醇类、酮类物质具有高度亲和性,从而改变了荷叶表面微观结构和脂类成分。  相似文献   

2.
对液滴撞击普通表面、疏水表面、疏水—亲水混合表面的行为进行可视化观测,对比研究不同撞击表面的动力学特性,分析表面润湿性以及撞击速度对撞击行为的影响.疏水部分接触角选取115°、135°和150°.液滴撞击不同的表面,均会发生铺展、回缩、反弹或破碎行为.液滴撞击疏水表面的速度越大,表面的铺展因子越大,但不会影响最大铺展时间(3 ms).当液滴以2.43 m/s的速度撞击超疏水表面时,铺展因子可达3.43.研究发现,液滴撞击超疏水—亲水混合表面未发生反弹,且撞击速度越大,接触角越大,液滴撞击产生的液指越多,断裂产生的次生小液滴越多.结果表明,超疏水—亲水混合条纹可以减小单个液滴的体积,减少液滴的二次回弹.  相似文献   

3.
基于非光滑表面减阻理论,采用化学刻蚀的方法在不锈钢针头上构建微观结构。利用光学视频测试仪和超景深三维扫描系统分别对试样表面的润湿性和微观结构进行了检测与表征。通过测量接触角和穿刺阻力试验研究其疏水性和减阻特性关系,并对其穿刺减阻机理进行了分析。试验结果表明:试样接触角越大,减阻效果越明显。研究其机理发现,化学刻蚀形成的微观结构增加了针头表面的疏水性能,降低了针头表面的摩擦系数,从而达到了减阻效果。因此,经化学刻蚀方法可以在一定程度上调控不锈钢针头表面的疏水性进而控制其减阻特性。  相似文献   

4.
利用高速精密微铣削机床在铝合金表面加工微孔阵列结构,研究了直径为200μm的微钻头钻削铝合金时,钻削参数对孔的加工质量的影响,并对优化参数加工后铝合金表面的微观结构和疏水性能进行了观测。结果表明:在高速精密微钻削过程中,进给量对孔的加工质量存在一定的影响,当主轴转速为30000r/min,进给量为0.001mm/r时,孔的表面质量最好。在本征接触角约为50°的光滑铝合金表面上加工微米级孔阵列结构可有效提高材料表面的疏水性能,接触角大小随孔间距增大而减小,随孔深度增加有所提升,未经化学修饰表面接触角最高达到113°,实现了基于高速精密微钻削技术在金属材料表面上构建微观结构阵列,使材料表面润湿性由亲水向疏水的转变。  相似文献   

5.
荷叶超疏特性自清洁功能的仿生制造是解决传热表面结垢问题的一种有效途径,基于荷叶超疏特性自清洁机制分析,设计出具有仿生自清洁功能的聚碳酸酯微观阵列圆柱和圆锥台形粗糙结构的超疏特性表面形貌,研究了其微热压成型工艺。研究表明:通过仿生表面改形,使聚碳酸酯基片形成微米级阵列圆柱形和圆锥台形粗糙微结构,可使其液珠接触角超过160°,从而使其具有荷叶类似的超疏特性自清洁功能,而低压微热压成型工艺能实现仿生聚碳酸酯微观阵列超疏特性自清洁功能表面成型制造。当热压成型温度跨越Tg+20℃,聚碳酸酯基片可完全演化为黏弹性高弹态,这可使变形充填成型所需的应力突降98%,从而使微观阵列圆柱和圆锥台的热压成型压力分别降低至2.0、2.85 MPa,可有效避免仿生超疏特性自清洁功能表面微热压成型的脱模损伤。  相似文献   

6.
用直流溅射技术及后续高温退火处理,在玻璃表面制备Ag纳米粒子掩膜板,通过控制不同的退火温度和腐蚀时间,研究玻璃表面透过率及润湿性的变化.采用扫描电子显微镜(SEM)观测了Ag纳米粒子的大小和分布.采用UV-Vis分光光度计测定刻蚀后玻璃的透过率变化,采用表面接触角仪测定了刻蚀后玻璃表面润湿性的改变,以及有机氟硅烷处理后表面润湿性的改变.结果表明:退火温度为300℃时,表面Ag纳米粒子更均匀;刻蚀时间为4 min时,可见光透过率提高最多,最高可达93.8%,比原始样品提高了3.8%;刻蚀后玻璃的亲水性更加明显,接触角为9°,后续经过化学修饰后玻璃表面的疏水性有所提高,但提高并不明显,表面接触角为102°.  相似文献   

7.
仿生超疏水表面的制备技术及其进展   总被引:2,自引:0,他引:2  
仿生超疏水表面具有防水、自清洁等优良特性.自然界中存在许多无污染、自清洁的动植物表面,如超疏水的荷叶表面、超疏水各向异性的水稻叶表面、超疏水的暗翼表面等.影响材料表面润湿性的主要因素育材料表面能、表面粗糙度和表面微一纳结构.超疏水表面的自清洁功能源自于表面形貌与低表面能物质的共同作用,可以通过两类技术路线来制备超疏水表面:控制材料表面能和修饰微细结构表面.  相似文献   

8.
通过氟硅单体1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(简称F3)的阴离子开环聚合(ROP)、苯乙烯(St)的原子转移自由基聚合(ATRP),合成了含氟硅嵌段共聚物PMTFPS-b-PS,并将其以四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)为溶剂进行静电纺丝。采用接触角测量仪(CAM)、扫描电镜(SEM)、X射线光电子能谱(XPS)研究PMTFPSb-PS电纺膜退火前后的疏水性、微观形貌以及表面化学组成。结果表明:电纺纤维的水接触角可达152.6°,即达到超疏水的效果,经过120℃退火处理后电纺膜的表面光滑,接触角有所减小,但其水接触角仍远高于共聚物溶剂膜的接触角。  相似文献   

9.
通过氟硅单体1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(简称F3)的阴离子开环聚合(ROP)、苯乙烯(St)的原子转移自由基聚合(ATRP),合成了含氟硅嵌段共聚物PMTFPS-b-PS,并将其以四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)为溶剂进行静电纺丝。采用接触角测量仪(CAM)、扫描电镜(SEM)、X射线光电子能谱(XPS)研究PMTFPSb-PS电纺膜退火前后的疏水性、微观形貌以及表面化学组成。结果表明:电纺纤维的水接触角可达152.6°,即达到超疏水的效果,经过120℃退火处理后电纺膜的表面光滑,接触角有所减小,但其水接触角仍远高于共聚物溶剂膜的接触角。  相似文献   

10.
生物表面性质与表面结构密切相关,玫瑰花花瓣是一种超疏水表面,对玫瑰花花瓣表面微观形貌的研究,有助于理解超疏水表面的作用机制以及优化超疏水表面的结构设计。制备了不同颜色的玫瑰花花瓣试样,采用角接触测量仪和激光扫描显微镜,分别测量和观察不同颜色的玫瑰花花瓣表面的接触角和表面微观形貌,采用中值滤波、均值滤波对淡黄玫瑰花花瓣表面高程数据进行处理,重构得到仿生玫瑰花表面。对比分析淡黄玫瑰花花瓣表面和仿生重构表面,结果表明中值滤波和均值滤波处理后重构的表面与原始表面微观形貌相似,润湿性能相近。  相似文献   

11.
以菌落总数、水分含量、糊化特性、感官评分等为评价指标,研究了不同水浴温度和水浴时间对鲜湿米粉的杀菌效果和品质的影响,在确保水浴杀菌能够降低鲜湿米粉的初始带菌量的同时改善鲜湿米粉的品质,从而确定最佳的水浴温度和水浴时间。结果表明:经过水浴杀菌处理后,鲜湿米粉的菌落总数明显降低,说明水浴杀菌处理能够杀死大多数微生物,从而有效地延长鲜湿米粉的保质期;与未水浴杀菌相比,水浴杀菌后鲜湿米粉的水分含量、衰减值和回生值等指标均显著减小,说明水浴杀菌处理能够改善鲜湿米粉中淀粉的热稳定性且能够延缓鲜湿米粉的老化;此外,经过显著性分析发现,水浴杀菌对鲜湿米粉的感官品质没有显著影响。综合考虑水浴杀菌对鲜湿米粉的保鲜效果和品质的影响,最终确定水浴温度95℃、水浴时间40 min为最佳的杀菌工艺。此时,鲜湿米粉中的大部分微生物被杀死,杀菌效果较好,且鲜湿米粉中淀粉的回生值显著减小,米粉不易老化,保鲜期可达3个月以上。  相似文献   

12.
为获得亲水性良好的聚丙烯非织造布,选用纳米二氧化硅溶胶为亲水成分,以聚丙烯酸酯乳液为胶黏剂,以异丙醇和去离子水为稀释剂配置亲水整理剂,然后将所得整理剂用于聚丙烯非织造布的亲水后整理。优化亲水整理剂中各组分的含量,探究后整理焙烘温度和时间,表征整理所得聚丙烯非织造布的亲水性能。结果表明:当二氧化硅溶胶质量分数为0.8%,聚丙烯酸酯质量分数为4.0%,异丙醇质量分数为24.0%,余量为水时,可获得性能良好的亲水整理剂;当烘干温度为60℃,烘干时间为300 s时,经亲水整理剂整理后的聚丙烯非织造布的水接触角为0°;相比未整理布样,整理后的非织造布的纤维表面出现胶黏剂和二氧化硅微球层组成的膜状物,断裂强力和断裂伸长几乎无变化,纯水通量明显增大;经60℃的水和乙醇分别处理3 h后,整理所得聚丙烯非织造布的接触角仅为23°和32°,证明制得的聚丙烯非织造布具有良好的亲水耐久性。  相似文献   

13.
金属表面超疏水性能的研究是当今多学科研究的热点与难点,针对金属表面超疏水以及自清洁性能的研究现状,通过激光加工方法在粗糙铝合金表面构筑一种具备超疏水自清洁特性的网格状多级结构.采用扫描电子显微镜(S E M)、激光共聚焦显微镜(L S C M)以及光学接触角测量仪等表征试样表面的微观结构、三维形貌和润湿特性.结果表明:制备表面具有网格状多级结构,结构展现凹槽、坑、飞溅状或颗粒状的复杂形貌和复合尺度特征,表面具有优异的超疏水性能,接触角达到150.6°.同时自清洁性能测试发现超疏水铝合金表面展现良好的低黏附以及自清洁性能,这种复合性能对铝合金在脱附减阻等领域的应用研究提供一定的参考意义.  相似文献   

14.
首次采用电场极化技术精确控制共轭聚合物(P_3HT)薄膜表面的润湿性,通过调节极化条件,成功实现了对P_3HT薄膜表面润湿性的精确控制,薄膜表面水接触角可以实现从疏水性到亲水性转变。通过光谱学、形貌学及接触角等表征手段,详细研究了电场极化作用下共轭聚合物分子取向聚集形态及作用机理。该工作不但扩展了共轭聚合物薄膜材料的应用范围,也为分子形态学的研究奠定了基础。  相似文献   

15.
采用静电喷涂法,通过调节PS/THF溶液的浓度制备了不同表面结构的PS膜,并通过场发射扫描电镜和静态接触角测定仪对膜表面结构及表面浸润性进行了研究。结果表明,PS/THF溶液的浓度是影响PS膜表面形貌的重要因素,而固体表面的化学组成和微观几何结构对固体表面浸润性起着重要的作用。在PS/THF溶液的质量分数为1%和10%条件下制得的PS膜表面,分别具有平滑和无孔微球与纤维复合的结构,表面接触角分别为96.2°和98.7°,具有疏水特性;而质量分数为5%时所制备的膜表面,具有多孔状的微米颗粒与纳米纤维相复合的粗糙结构,表面接触角高达153°,具有超疏水特性。此外溶剂的挥发性和极性也对表面形貌的变化也起着重要的作用。  相似文献   

16.
固体表面纳米结构可以有效地调控界面润湿特性,在材料能源等领域具有重要应用前景。改变纳米结构的几何尺寸能够在一定范围内调节润湿特性,但存在一定的局限性,调节固液间能量系数能够进一步改变界面的润湿特性。然而,纳米粗糙表面液滴在更大区间内的固液相互作用系数下的润湿特性研究甚少。本文采用分子动力学模拟的方法,研究了倒三角形纳米粗糙表面液滴在不同区间能量系数下呈现的润湿行为,并采用渗透率进行表征。结果发现:四个不同的区间内固液间能量系数对渗透率的作用规律不同,呈现出先增后减的趋势,液滴也依次呈现出显著的润湿态,对应润湿状态图中疏水的Cassie态到亲水的Wenzel态,而能量系数越过临界值(~7),Wenzel态再反转回显著的Cassie态;同时,液滴分子空间分布呈现明显的规律性,其底层原子在晶格线或晶面均衡分布,形似壁面原子的外延生长。本文的研究获得了能量系数对润湿性影响规律的全貌性认识,对纳米结构表面润湿性的设计和调控具有一定的指导意义。  相似文献   

17.
本文在铜基表面上,采用了化学镀银和表面修饰的方法制备了具有枝晶状的微/纳米复合结构的超疏水表面。微观结构是影响和调控表面浸润性的重要因素之一,金属银层微观结构变化影响表面浸润性,当表面为枝晶状的微/纳米复合结构时,表面接触角最大为169°,考察预处理温度和化学镀时间对表面金属镀银层微观结构的影响。结果表明:-20℃低温处理有利银纳米粒子在铜表面成核生长;随化学镀时间增加,化学镀银层结构从纳米颗粒团簇转变为枝晶结构,再逐渐生长为类珊瑚结构,化学镀时间为30 s时表面为枝晶结构;最后分析各影响因素的作用机理及金属银层的成核生长过程。  相似文献   

18.
ES纺粘无纺布具有蓬松、柔软、强度好等特点,经亲水改性后是高档卫生用品理想的覆面层材料。为赋予ES无纺布良好的多次亲水性能,研究表面活性剂的结构与其在溶液中的表面张力和在PE薄膜上的动态铺展性能间关系,考察了表面张力、动态接触角、表面活性剂亲水基和疏水基结构等对整理剂性能指标的影响,并优化表面活性剂亲水整理剂配方。结果表明:表面张力值的大小与表面活性剂在PE界面成膜的快慢存在负相关关系,表面张力值越小,成膜速度越快。当整理剂浓度8g/L、烘干温度80℃、烘干时间10min和上油量0.36%~0.42%时,含三硅氧烷聚氧乙烯醚表面活性剂整理剂亲水改性后的ES无纺布具有最佳的多次亲水性能。优化后的亲水整理剂的综合指标(反湿量小于0.11g,第五次穿透时间小于5s,表面比电阻小于2.91×108Ω·cm)已基本达到卫生用品覆面材料对穿透时间(3~5s)、反湿量(小于等于0.13g)和表面比电阻(小于等于7×109Ω·cm)等指标的要求。  相似文献   

19.
利用座滴法研究了含氟表面活性剂在石英表面形成的吸附膜的润湿性质,考察了温度及不同类型电解质对其接触角的影响趋势,并开展了室内模拟驱油实验。研究发现,两性含氟表面活性剂可以有效地改变石英表面的润湿性,在蒸馏水及模拟地层水的条件下都可以使亲水的石英表面变为中性。同时,两性含氟表面活性剂具有较好的抗盐性及耐温性。室内模拟驱油实验显示,两性含氟表面活性剂将岩心的润湿性控制在中性弱亲水状态,促进孔道水膜剥离,减小水驱渗流阻力,从而降低水驱压力和提高原油采收率。  相似文献   

20.
用于固液界面减阻无氟超疏水表面制备新方法   总被引:3,自引:0,他引:3  
现阶段超疏减阻表面常用低表面能的氟化剂制备不绿色环保,为实现超疏水减阻表面的无氟化,提出一种可用于固液界面减阻的无氟铝合金超疏水表面制备新方法.首先,采用化学腐蚀技术在铝合金基底上快速制备微纳量级表面粗糙结构,再利用天然松香溶液和炭黑悬浊液进行表面修饰改性处理,替代传统氟化物.在表征上,分别采用扫描电子显微镜(SEM)、接触角测量仪和X射线能谱分析(EDS)来分别表征微观结构尺寸、表面润湿性和元素分析.通过不断优化表面结构和修饰溶液浓度,在铝合金样品上制备出接触角为155°,滚动角为1.38°处于Cassie模型状态的超疏水表面.结果表明:所构建的无氟超疏水表面经受80次浸没取出循环完整性良好,此外在速度为1.4 m/s连续水滴冲击3 h后仍保持良好的超疏特性;通过减阻冲刷实验装置测试,在0.5~3.5 m/s冲刷流速范围内,本方法制备的无氟超疏表面可达到20%~30%减阻率,从而验证了新方法在超疏减阻应用中的有效性.整个制备过程简单、成本低廉且无氟环保,利于规模化生产应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号