首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),temperature,and time were discussed.Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0,20 and 40 °C,respectively.Flowability and rheologicaltests on cement pastes were conducted to characterize the development of the rheologicalbehavior of fresh cement pastes over time.The exprimentalresults indicate that the initialflowability and flowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer.Higher temperature usually leads to a sharper drop in initialflowability and flowability retention.However,for the cement paste with high Sp/C or w/c,the flowability is slightly affected by temperature.Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned influentialfactors at low Sp/C.In the case of high Sp/C,yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature.Moreover,two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c,temperature and time are developed on the basis of the existing models,in which experimentalconstants can be extracted from a database created by the rheologicaltest results.  相似文献   

2.
The microstructural study was conducted on cement and cement-slag pastes immersed in different concentrations of Mg(NO_3)_2 solutions utilizing ~(29)Si, ~(27)Al NMR spectroscopy and XRD techniques. The results show that the hydration of both the cement and cement-slag pastes is delayed when the pastes are cured in Mg(NO_3)_2 solutions as compared to the pastes cured in water. Moreover, Mg~(2+) ions also exhibit an decalcifying and dealuminizing effect on the C-A-S-H in cement and cement-slag pastes, and thereby decrease Ca/Si and Al[4]/Si ratios of the C-A-S-H. The dealuminization of C-A-S-H is mitigated for cement-slag paste as compared to pure cement paste. The depolymerized calcium and aluminum ions from C-A-S-H gel mainly enter the pore solution to maintain the pH value and form Al~[6] in TAH, respectively. On the other hand, Mg~(2+) ions exert an impact on the intra-transition between Al~[6] species, from AFm and hydrogarnet to hydrotalcite-like phase. NO_3~-ions are interstratified in the layered Mg-Al structure and formed nitrated hydrotalcite-like phase(Mg_(1-x)Al_x(OH)_2(NO_3)_x·nH_2O). Results from both ~(27)Al NMR and XRD data show that ettringite seems not to react with Mg~(2+) ions.  相似文献   

3.
Three different curing temperatures(20 ℃, 40 ℃, and 60 ℃) were set, so that the nonevaporable water(w_n) contents of plain cement pastes cured at these three temperatures were measured to determine the hydration degree of cement. Tests were carried out to compare the pore structure and strength of cement paste, as well as the strength and permeability of concrete under different temperature curing conditions when their cements were cured to the same hydration degree. The experimental results show that either at a relatively low hydration degree(w_n=15%) or high hydration degree(w_n=16.5%), elevated curing temperature has little influence on the hydration products of cement paste, while it has a negative influence on the pore structure and compressive strength of cement paste. However, this negative effect is weaker at high hydration degree. The large capillary pore(100 nm) volumes of cement pastes remain almost the same at high hydration degree, regardless of curing temperatures. As for the concrete, elevated curing temperature also has negative influence on its compressive strength development, at both low hydration degree and high hydration degree. And this negative effect is stronger than that on cement paste's compressive strength at the same hydration degree. On the whole, elevated curing temperature has little influence on the resistance of concrete to chloride ion penetration.  相似文献   

4.
Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation(GGA). The elastic constants were confirmed that the predicted Imm2-BCN is mechanically stable. The anisotropy of elastic properties were also studied systematically. The anisotropy studies of Young's modulus, shear modulus, linear compressibility, and Poisson's ratio show that the Imm2-BCN exhibits a large anisotropy. Through the quasi-harmonic Debye model, the relations between the equilibrium volume V, thermal expansion α, the heat capacity C_V and CP, the Grüneisen parameter γ, and the Debye temperature Θ_D with pressure P and temperature T were also studied systematically.  相似文献   

5.
Unilateral sulfate attack of cementitious materials containing 40% slag with different water to binder ratios was investigated. The results showed that the degradation of slag blended cement pastes was nearly from the corners of paste surface with cracking and spallings, water-to-binder(w/b) ratio made a significant sense to the damage that low w/b ratio led to little weight loss, less cracking and spalling damage and vice versa. Microstructural experimental results demonstrated that in the three different stages of sulfate attack, degradation of pastes was primarily associated with the migration behavior and bonding configuration of aluminum, in the early ages Al was mostly present in C-(A)-S-H, and thus, the damage of pastes hardly appeared while at later ones Al had been largely transferred from C-(A)-S-H into AFt, leading to expansive damage.  相似文献   

6.
We investigated the temperature dependency of the dynamic mechanical properties of cement asphalt paste by the dynamic mechanical thermal analysis(DMTA) method. The experimental results show that the dynamic mechanical properties of cement asphalt pastes are sensitive to temperature due to the inclusion of asphalt, and may go through different states within a temperature range of-40 ℃ to 60 ℃, which is different from that of pure cement and asphalt. As the temperature of the cement asphalt paste increases, a considerable change of dynamic mechanical properties, including storage modulus(E'), loss modulus(E') and loss factor(tand) is observed. Moreover, the influence of asphalt to cement(A/C) ratio on the temperature sensitivity of the dynamic mechanical properties of cement asphalt composites was investigated. The temperature dependency of cement asphalt composites is ascribed to the temperature dependency of the asphalt and its interaction with cement paste. A simple fractional model is proposed to describe the viscoelastic behavior of cement asphalt composites.  相似文献   

7.
A simple constitutive model is presented to describe the mechanical behaviors of granular soils in a large stress range. A novel normal compression line(NCL) is first expressed by introducing a limit void ratio(e_L) in the double logarithmic scale.Subsequently, a state parameter(ξ) is defined to quantify the current state of granular soils, and a unified hardening parameter(H)that is a function of the state parameter(ξ) is developed to govern the hardening process of the drop-shaped yield surface.Combining with flow rule, a constitutive model for granular soils is proposed. Finally, the comparison between the predictions and the test results of Cambria sand and Coarse-grained material indicates that the model is able to describe the mechanical behaviors of granular soils in a large stress range.  相似文献   

8.
Nanocrystalline zirconia (ZrO2) was synthesized using a microwave-hydrothermal process. The effect of pH on the crystallization of the ZrO2 powders was investigated. The phase and microstructure of ZrO2 powders were examined using X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Results show that pure m-ZrO2 can be obtained at low pH (pH<2). Pure t-ZrO2 is formed at pH = 7 and 14. The size of the ZrO2 crystals is in the range of 8-26 nm and decreases with increasing pH. The formation of m-ZrO2 results from the precipitation of ZrO2 from solution. The t-ZrO2 is formed through the in-situ structural rearrangement of amorphous Zr(OH) x O y . The stabilization of t-ZrO2 is attributed to the small crystal size and the adsorption of hydroxy ions on the surfaces of the crystals.  相似文献   

9.
The quantification of the sheltering and exposure effects of non-uniform sediments has been widely achieved through hiding function models. Big challenge exists so far in the model parameter that is highly variable and differs greatly between laboratory flumes and field streams. This paper presents an improved surface-based hiding function. The force balance for particle inception was formulated and the allocation of the overall bed shear stress into each group of sediments was mimicked. The new hiding function was examined against and agrees well with the documented field and flume data. It was shown that the hiding function is closely related to the relative flow depth and the reference elevation in the velocity profile in addition to the bed material gradation. The power law of velocity profile that applies to both flume flows and natural streams can link the flume and field data together. The hiding function with b = 1/6 and b = 1/2 is applicable to natural streams and laboratory flumes, respectively. The value of b = 0.263 also works well for gravel bed rivers. The range of the reference elevation, namely z 0 = 0.4Dm–1.4Dm, is recommended for either the flume or field data. The new hiding function contributes to addressing clearer physical meanings and a useful perspective for further improvement.  相似文献   

10.
A new statistical fitting approach,named Statistical Distribution-Based Analytic(SDA)method,is proposed to fit single Gaussian-shaped Kαand KβX-ray peaks recorded by Si(PIN)and silicon drift detector(SDD).In this method,we use the discrete distribution theory to calculate standard deviation of energy resolutionσ.The calibration ofσand energy(E)for two detectors between the energy ranges of 4.5–26 keV are also completed by measuring characteristic X-ray spectra of nineteen types of pure elements.With the spectrum fraction(SF)parameter proposed in this paper,the SDA method can be used to resolve overlapping peaks.In measured spectra,the Gaussian part of X-ray peaks can be fitted by a Gaussian function with two parameters,σand SF.This new fitting approach is simpler than traditional methods and it achieves relatively good results when fitting the complex X-ray spectra of national standard alloy samples detected by Si(PIN)and SDD detectors.The2r values are obtained for each spectrum to assess fitting results,and the SDA fitting method gives a preferable fit for the SDD detector.  相似文献   

11.
CuO-doped (Ag0.75Li0.1Na0.1K0.05)NbO3 (ALNKN-xCuO, x = 0–2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure, microstructure, and piezoelectric properties of the ceramics were investigated. The experimental results show that the ALNKN ceramics without doping CuO possess rhombohedral phase along with K2Nb6O16-type phase and metallic silver phase. For all of the CuO-doped ALNKN ceramics, a pure perovskite structure with the orthorhombic phase was obtained by enclosing the samples in a corundum tube. A homogeneous microstructure with the grain size of about 1 μm was formed for the ceramics with 0.5mol% CuO. The grain size increases with increasing amount of CuO. The temperature dependence of dielectric properties indicates that the ferroelectric phase of the ALNKN-xCuO ceramics becomes less stable with the addition of CuO. The ceramics with x = 1mol% exhibit relatively good electrical properties along with a high Curie temperature. These results will provide a helpful guidance to preparing other AN-based ceramics by solid-state reaction method in air atmosphere.  相似文献   

12.
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2, SrN2 and BaN2. The ground state properties of three alkaline earth diazenides were obtained, and these were in good agreement with previous experimental and theoretical data. By using the quasi-harmonic Debye model, the thermodynamic properties including the debye temperature Θ D, thermal expansion coefficient α, and grüneisen parameter γ are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa, respectively. The optical properties including dielectric function ε(?), absorption coefficient α(?), reflectivity coefficient R(?), and refractive index n(?) are also calculated and analyzed.  相似文献   

13.
This paper investigates the MED(Minimum Entransy Dissipation) optimization of heat transfer processes with the generalized heat transfer law q ∝(△(T~n))~m T. For the fixed amount of heat transfer, the optimal temperature paths for the MED are obtained. The results show that the strategy of the MED with generalized convective law q ∝(△T)~m T is that the temperature difference keeps constant, which is in accordance with the famous temperature-difference-field uniformity principle, while the strategy of the MED with linear phenomenological law q ∝△(T~(-1)) is that the temperature ratio keeps constant. For special cases with Dulong-Petit law q ∝(△T)~(1.25) and an imaginary complex law q ∝(△(T~4))~(1.25), numerical examples are provided and further compared with the strategies of the MEG(Minimum Entropy Generation), CHF(Constant Heat Flux) and CRT(Constant Reservoir Temperature) operations. Besides, influences of the change of the heat transfer amount on the optimization results with various heat resistance models are discussed in detail.  相似文献   

14.
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.  相似文献   

15.
Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.  相似文献   

16.
The regression formula between3He/4He ratio of underground fluids and terrestrial heat flow in continental areas is tested by data sets from the former Soviet Union and the mainland of China. The results show that there is no close relation between the two values. The heat-He relation might estimate the regional heat flow value with ±25% accuracy at best. We propose that the ratio of crust/mantle component of continental heat flow (q c/q m) be inversely related to the3He/4He ratio of underground fluids. Based on data sets of3He/4He ratio andq c/q m in the Eurasia and Canadian Shield, we obtain the regression relation betweenq c/q m and3He/4He:q c/q m=0.815?0.300*loge (3He/4He), in which the unit of3He/4He is Ra (atmospheric3He/4He ratio). The crust and mantle heat flow components can be taken from surface heat flow andq c/q m ratio. Based on this formula and heat flow data in major basins of China, the crustal, mantle heat flow values and the average crustal heat production rates were estimated. The estimated crustal chemical composition of China is in agreement with the result inferred by deep seismic sounding survey. Helium isotope ratio (3He/4He) of underground fluids may be a useful parameter for separating crust and mantle components of continental heat flow.  相似文献   

17.
(Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics doped with x wt%CaZrO3 (x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 kV/mm at x=7.5. In virtue of low dielectric loss (tan δ<0.001 5), moderate dielectric constant (εr >1 500) and high breakdown strength (Eb >17.5 kV/mm), the CaZrO3 doped (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramic is a potential candidate material for high power electric applications.  相似文献   

18.
c-axis-oriented SmBa_2Cu_3O_7(SmBCO) films have been deposited on(100)- LaA1O_3(LAO)substrate by metal organic chemical vapor deposition(MOCVD) technique.The effects of deposition temperature(T_(dep)) and total pressure(P_(tot)) on the orientation and microstructure of SmBCO films were investigated.The orientation of SmBCO films transformed from α-axis to c-axis with increasing of T_(dep) from 900 to 1 100℃.At T_(dep)=1 050℃,SmBCO films had c-axis orientation and tetragon surface.At P_(tot)~(dep)=400-800 Pa and T_(dep)=1 050 ℃,totally c-axis-oriented SmBCO films were obtained.The R_(dep) of SmBCO films increased firstly and then decreased with increasing P_(tot).The surface of SmBCO films exhibited tetragon morphology at 1 050 ℃ and400 Pa.Maximum thickness of SmBCO film deposited was 1.2μm at P_(tot)= 600 Pa,and the corresponding R_(dep)was 7.2 μm·h~(-1).  相似文献   

19.
In this work, we have studied a new lead-free ceramic of(1-y)Bi_(1-x)Nd_xFeO_(3-y)BiScO_3(0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their phase structure and electrical properties were investigated in detail. The ceramics with 0.05≤x≤0.10 and 0.05≤y≤0.15 belong to an R3 c phase, and the rhombohedral-like and orthorhombic multiphase coexistence is established in the composition range of 0.125≤x≤0.15 and y=0. The electrical properties of the ceramics can be enhanced by modifying x and y values. The highest piezoelectric coefficient(d33~51 p C/N) is obtained in the ceramics with x=0.075 and y=0.125, which is superior to that of a pure BiFeO_3 ceramic. In addition, a lowest dielectric loss(tan δ~0.095%, f=100 k Hz) is shown in the ceramics with x=0.15 and y=0 due to the involvement of low defect concentrations, and the improved thermal stability of piezoelectricity at 20–600oC is possessed in the ceramics. We believe that the ceramics can play a meaningful role in the high-temperature lead-free piezoelectric applications.  相似文献   

20.
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete’s crack potential. The highest inflection time (t i) obtained from resistivity curve and the final setting time (t f) were used with crack time (t c) in coming up with mathematical models for the prediction of concrete’s cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号