首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

新型对数非奇异终端滑模及其在QTR无人机姿态控制上的应用

刘海波1, 王和平1,2, 孙俊磊1

(1. 西北工业大学 航空学院,西安 710072;

2. 西北工业大学 深圳研究院,广州 深圳 518057)

创新点说明:

论文首先利用非奇异终端滑模有限时间内收敛和鲁棒性强的优点,设计了一种新型对数型非奇异终端滑模面。其次,针对传统趋近律收敛时间长、速度慢、抖震严重等不足,提出一种具有二阶滑模特性的新型快速趋近律。

研究目的:

针对四倾转旋翼飞行器姿态控制系统复杂非线性、强耦合、多输入多输出、存在复合干扰等特点,利用终端滑模有限时间内收敛和滑模鲁棒性强的优点,设计新型对数型非奇异终端滑模控制律,以提高四倾转旋翼飞行器姿态控制的控制精度。

研究方法:

本文提出一类基于新型对数形式的非奇异快速终端滑模面、新型趋近律及扩张状态干扰观测器的非奇异终端滑模控制方法。

研究结果:

通过与传统非奇异快速滑模控制进行比较,仿真实验结果表明,所提控制方案具有良好的控制性能。

结论:

1)本文针对四倾转旋翼无人机姿态控制问题,设计了新型对数型非奇异终端滑模面,从而加快了收敛速度;

2)采用了扩张状态观测器,对控制器进行了在线补偿,有效地抑制了复合干扰对系统的影响;

3)提出具有二阶滑模特性的新型快速趋近律,平滑无抖震地加快了系统收敛速度;

4)仿真分析验证了所提方法的有效性,具有较大的实际应用价值。

关键词:倾转旋翼;非奇异;滑模控制;姿态控制;趋近律;扩张状态;干扰观测器

  相似文献   

2.
为解决带有非匹配不确定的弹性高超声速飞行器(FHV)鲁棒跟踪控制问题,设计一种基于有限时间干扰观测器的非奇异终端滑模控制器.首先,通过将弹性模态的影响视为不确定,与系统参数不确定一起处理为综合不确定,将带有弹性的高超声速飞行器模型简化为便于控制器设计的面向控制模型;其次,设计有限时间干扰观测器估计模型的综合不确定;进而,基于干扰观测器,设计一种新型的非奇异终端滑模面,将高阶不匹配问题转化成一阶匹配问题,进行控制器的设计;最后通过Lyapunov理论证明了闭环系统的稳定性.仿真结果表明:所设计的控制器可以有效抑制非匹配不确定及弹性的影响,实现了飞行器速度与高度的稳定跟踪控制.  相似文献   

3.
为实现可重复使用运载器(Reusable launch vehicle, RLV)的再入段准确制导与鲁棒容错控制,提出了一种基于改进预测校正制导律和鲁棒容错姿态控制联合的方法.首先,设计改进倾侧角幅值模型和航迹方位角走廊的预测校正制导律,结合标称迎角剖面,在线计算得出姿态系统的输入指令;然后,针对控制系统的不确定/干扰及舵面部分失效问题,提出一种改进跟踪微分干扰观测器来估计不确定/干扰和舵面失效作用,通过在观测器中增加前馈项进一步提高了复合干扰的估计精度;最后,针对舵面饱和问题设计辅助抗饱和系统,并应用sigmoid饱和函数来改善姿态系统中角速率回路反步法的控制性能.制导与控制系统的六自由度联合仿真实验表明,在考虑姿态回路复合干扰、舵面部分失效及饱和的情况下,RLV准确跟踪了姿态角指令,其飞行轨迹能够到达再入终端落点区域并满足约束条件,因此提出的方法实现了再入段准确制导,较好解决了姿态回路不确定、舵面部分失效及饱和问题,具备良好的鲁棒容错控制性能.  相似文献   

4.
针对飞翼布局无人机受扰姿态控制问题,提出一种二阶滑模姿态跟踪鲁棒控制方案。基于时标分离特性,将飞翼布局无人机姿态控制系统分为内外回路进行设计。外回路采用自适应二阶终端滑模控制器,利用自适应算法调节切换增益抑制复合干扰对系统性能的影响,同时二阶终端滑模将不连续的符号函数加在控制量的导数上,通过积分得到连续的滑模控制律,从而有效地消除了常规滑模控制器的抖振。内回路采用基于自适应super twisting滑模观测器的积分滑模控制器,设计自适应super twisting滑模观测器以实现对内回路复合干扰的估计和补偿。最后通过控制分配环节将控制力矩分配到舵面上,仿真结果验证了所提方案的有效性。  相似文献   

5.
对于风场扰动中的飞翼布局无人机,需要考虑模型参数不确定和外界干扰对姿态控制的影响,以及解决操纵面冗余、附加力效应显著、多轴操纵耦合、舵效非线性等特殊问题。采用基于扩张状态观测器的terminal滑模和多目标非线性控制分配对姿态角的跟踪控制问题进行了研究,将扩张状态观测器与基于饱和函数的terminal滑模控制器相结合,在名义滑模控制律的基础上采用扩张状态观测器实现对干扰的估计和补偿,有效提高了系统的鲁棒性和控制精度,并且充分利用冗余操纵面,根据飞行任务需求,实现对多种目标综合权衡的非线性控制分配。  相似文献   

6.
针对高超声速飞行器再入过程中的强耦合和干扰所带来的非匹配不确定控制问题,提出一种新型自适应迭代学习控制系统的设计方法。研究结合采用先进控制方法与迭代学习控制策略。首先给出面向控制的高超声速飞行器姿态模型。然后针对一类非线性系统,提出一种结合滑模控制的新型迭代学习控制系统设计方法,并将其应用到所提出的面向控制的姿态模型。最后应用Lyapunov泛函来证明闭环系统跟踪误差的收敛性和变量的有界性。仿真展示所提方法能使飞行器快速稳定地跟踪指令,对比传统滑模控制说明本方法具有针对气动不确定项和干扰项的强鲁棒性。  相似文献   

7.
为了解决常规滑模控制中产生的抖振,同时利用终端滑模控制中快速收敛的优良特性,针对一类二阶仿射非线性系统,将非奇异终端滑动流形和终端到达律同时应用到滑模控制设计中,得到低抖振非奇异终端滑模控制,并证明其具有较强的鲁棒性.  相似文献   

8.
为了提高固定翼无人机的飞行控制精度,减少系统动态耦合和外界干扰对固定翼无人机飞行控制系统性能的影响,建立了固定翼无人机的奇异摄动模型,在此基础上提出基于干扰观测器的滑模控制方法.首先对固定翼无人机的速度和姿态进行动力学建模,将固定翼无人机的动力学模型转换为奇异摄动模型,再对奇异摄动模型进行快慢分解完成解耦,得到两个降阶非耦合子系统,即以角速度为快变量的快子系统和以速度、姿态为慢变量的慢子系统,分别对角速度回路和速度、姿态回路设计基于干扰观测器的滑模控制器.最后,采用Simulink仿真验证了基于快、慢分解的固定翼无人机滑模控制方法的可行性和有效性.  相似文献   

9.
在攻击机动目标的末制导段, 为使舰炮制导炮弹能够同时满足攻击角、视线角速率测量受限、执行器控制饱和等多项约束, 基于自适应鲁棒控制与动态面滑模设计了一种导引控制一体化设计方法. 首先, 在纵平面内, 建立了弹体的导引控制一体化设计模型. 然后, 设计扩张状态观测器迅速准确地估计出视线角速率与目标机动等未知干扰. 其次, 运用自适应指数趋近律设计了非奇异终端滑模, 以确保视线角跟踪误差与视线角速率在有限时间内收敛至零. 进而, 结合自适应鲁棒项构造动态面滑模与虚拟控制量用以镇定串级系统并削弱变结构项的抖振. 进一步地, 通过设计自适应Nussbaum增益函数, 较好地补偿了由舵机偏转受限引入的控制饱和非线性问题. 运用Lyapunov稳定性理论严谨地证明了终端视线角跟踪误差、视线角速率的有限时间收敛性, 以及系统的一致最终有界性. 仿真实验表明, 所提出的设计方法能够使舰炮制导炮弹在打击具有不同机动形式的目标时, 均具备较好的导引控制性能.  相似文献   

10.
针对高超声速飞行器的姿态控制问题,考虑系统模型不确定性以及外界干扰的影响,基于快速终端滑模设计了连续的姿态跟踪控制器。将飞行器姿态控制系统模型按时间尺度划分为快回路和慢回路,其中慢回路的控制器设计目标是给出期望角速度作为快回路的制导指令,快回路控制器的设计目标是给出系统需求的控制力矩。基于有限时间控制理论分别针对各回路设计了连续的快速终端滑模姿态控制器,通过严格的数学证明,该控制器可以在系统模型存在不确定性以及外界干扰的情况下,使得姿态跟踪误差在有限时间内收敛。仿真结果表明本文的控制算法可以在短时间内使飞行器的姿态角均以较高的精度收敛至期望状态,且三个方向的控制力矩曲线均变化平滑,无抖振现象产生。  相似文献   

11.
针对空天飞行器再入飞行时动态的强非线性和不确定性问题,提出了一种基于反推法的自适应终端滑模控制方法.首先建立了ASV的具有时变参数的严反馈形式被控模型,进一步采用自适应策略在线估计被控系统的不确定参数,将一阶低通滤波器引入到虚拟控制律设计中,降低反推计算的复杂性.在反推设计的最后一步引入终端滑模控制,以提高控制系统对于匹配不确定性的鲁棒性和系统跟踪误差的收敛速度,同时引入矩阵的广义逆,避免控制增益参数估计过程中可能出现的奇异现象.最后借助Lyapunov稳定性理论,证明了闭环系统误差及状态信号一致最终有界.以某型ASV再入姿态跟踪控制为目标,进行了6自由度飞行仿真验证. 结果表明:所提出的自适应反推终端滑模控制方法跟踪速度快、鲁棒性强,且对不确定参数具有较强的自适应能力.  相似文献   

12.
为了提高四旋翼无人机姿态控制精度及抗干扰性能,将干扰观测器与扩张状态观测器相结合,提出了一种基于双观测器的滑模抗干扰控制方法.首先,对于部分已知信息的干扰用外生系统模型描述,并用干扰观测器进行估计;然后针对复杂的非线性可微干扰采用扩张状态观测器进行估计;接着设计滑模控制律来补偿双观测器估计的干扰,进而实现姿态控制;最后利用李雅普诺夫理论证明了系统的稳定性.仿真结果表明,该方法相较于传统的PID控制具有更高的跟踪精度和良好的抗干扰能力.  相似文献   

13.
针对四倾转旋翼飞行器姿态控制系统复杂非线性、强耦合、多输入多输出、存在复合干扰等特点,提出了一种分数阶滑模控制的设计方法。利用分数阶微积分算子的积分权重随时间的推移逐渐减小的特性,柔化作用在被控系统上的能量,减小整数阶微积分滑模面的超调现象,设计了分数阶微积分滑模面。并针对传统幂次趋近律收敛时间长、速度慢、抖震严重等不足,提出了一种具有二阶滑模特性的新型快速趋近律。在此基础上采用扩张状态观测器在线对复合干扰进行估计和补偿。仿真结果表明,相比传统整数阶滑模控制,所提控制方案具有良好的控制性能。  相似文献   

14.
为研究存在复合干扰的非常规布局菱形翼长航时侦察无人机姿态控制问题,针对系统存在强耦合、非线性、多输入多输出等特点,结合滑模变结构控制理论、分数阶微积分理论、自适应控制理论、新型基于非线性fal函数的快速趋近律及扩张状态干扰观测器,提出了一种包含干扰观测器的自适应分数阶微积分滑模控制方法.首先,为降低控制器的超调现象,结合分数阶微积分理论,利用分数阶微积分算子信息记忆和遗忘的特性,设计了分数阶微积分滑模面,以柔化控制器的输出,使得控制器超调现象得到良好的控制. 其次,为改善传统趋近律收敛时间长,抖震严重等弱点,利用fal函数“小误差大增益,大误差小增益”良好的特性,将非线性fal函数引入到趋近律的设计中,提出了一种可以快速收敛的新型趋近律,平滑无抖震地加快了系统收敛速度. 最后,由于建模误差和外部干扰的存在,使用扩张状态干扰观测器观测出等效干扰并在控制器中引入等效的补偿. 数值仿真结果表明,所提控制方法具有很强的鲁棒性,达到了理想的控制效果.  相似文献   

15.
针对空天飞行器再入段姿态控制问题,根据神经网络、滑模控制理论和控制分配技术,提出了一种有限时间复合控制策略。首先,根据空天飞行器再入段姿态模型设计了一种有限时间收敛的神经网络滑模控制器,得到使姿态角误差有限时间收敛的虚拟控制力矩。其次,采用控制分配技术将期望控制力矩映射到气动舵面和反推力系统。最后,通过对直接力/气动力复合控制的空天飞行器的仿真研究,验证了所提出复合控制策略的有效性。  相似文献   

16.
高超声速飞行器改进自抗扰串级解耦控制器设计   总被引:1,自引:0,他引:1  
针对高超声速飞行器无动力再入过程中具有强耦合、气动参数摄动及不确定性的非线性姿态模型,通过构造连续光滑扩张状态观测器及自抗扰串级解耦控制技术,设计了便于工程实际应用的高超声速飞行器自抗扰姿态控制器.通过构造qin函数实现了连续光滑扩展状态观测器的设计,可避免自抗扰控制器应用过程中的高频颤振现象.通过自抗扰串级耦合控制技...  相似文献   

17.
研究了基于终端滑模观测器的飞机防滑刹车系统执行结构故障重构的方法。针对常规滑模观测器渐进收敛而影响执行机构故障重构的时效性问题,利用终端滑模控制所具备的有限时间收敛特性,并且考虑实际系统故障信息未知的情况,构造非奇异终端滑模观测器(NTSMO)保证所有状态在有限时间内收敛于零,在等值控制方法的基础上给出了执行机构故障重构律。最后通过MATLAB仿真验证了所提方法的有效性。  相似文献   

18.
在近空间飞行器加速爬升模态下,传统的滑模控制方法在处理不确定性问题时,存在收敛速度慢、鲁棒性不强和抖振严重等不足。针对这些问题,本文提出双幂次趋近律滑模控制方法来设计飞行控制器,从而实现飞行器爬升段轨迹的精确跟踪。将飞行器非线性模型进行精确反馈线性化处理,并利用李雅普诺夫稳定性理论进行稳定性分析。仿真分析了双幂次趋近律滑模控制方法和传统滑模控制方法的控制效果。结果表明:在处理具有参数不确定性和外界干扰的非线性系统时,双幂次趋近律滑模控制方法能够精确地跟踪指令信号,并且具有较强的稳定性和鲁棒性。  相似文献   

19.
攻击时间和攻击角度控制的非奇异终端滑模制导律   总被引:1,自引:0,他引:1  
为提高导弹的突防能力并增强毁伤效果,对导弹攻击时间和攻击角度控制问题进行了研究,以导弹和目标相对运动模型为基础,提出了一种非奇异滑模导引律.利用成型理论设计了以时间多项式描述的、同时满足攻击时间和攻击角度约束的导弹视线角表达式.采用优化方法确定表达式系数.由于非奇异终端滑模理论具有使滑模面能够在有限时间内快速收敛的特点,故利用该理论构造关于视线角误差的滑模面,设计了一种无奇点的攻击时间和攻击角度控制制导律.该制导律可使导弹的实际视线角按照设计的理想视线角变化,使导弹满足攻击时间和攻击角度的双重约束.通过理论分析,证明了该制导律满足Lyapunov稳定性条件,能够实现攻击时间和攻击角度控制且不存在奇点.在多种情形下对所设计制导律进行了数值仿真.仿真结果表明,采用该制导律可在不同条件下有效实现导弹的攻击时间与攻击角度控制,与现有文献相比具有一定优势,当存在一定程度的外界干扰时仍能完成攻击时间和攻击角度控制.  相似文献   

20.
再入飞行器的大机动轨迹实现   总被引:3,自引:1,他引:3  
考虑了静不稳定再入飞行器的大机动轨迹的实现问题,利用不非线性系统的输出解耦方法设计了姿态稳定控制规律,并提出了一种带末端修正的比例导引控制律,上述两种控制律 中权组合控制方案实现了再入飞行器的大机动和精确攻击,给出的仿真结果证明了控制方案的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号