首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
500kV双回路输电线路铁塔采用Q420高强钢的研究   总被引:6,自引:0,他引:6  
随着750 kV、特高压以及大截面、多分裂导线输电线路的建设,高强钢在铁塔结构中的应用前景广阔.开展输电铁塔应用高强钢的研究,在工程中合理地采用高强度等级结构钢材,不仅有技术、经济等方面的现实意义,而且有利于提高我国输电线路建设水平,提高行业在国际市场上的竞争力.本文结合LF~PX 500 kV双回路输电线路铁塔结构采用高强钢的试点设计,就高强钢设计技术参数的选取、工程应用及其技术经济性、高强钢螺栓连接等方面进行了初步的探讨和研究,取得了一定的成果,提出了需进一步深入探讨和研究的问题及若干建议.  相似文献   

2.
单边连接高强单角钢压杆试验研究和仿真分析   总被引:3,自引:2,他引:1  
为了研究单边连接高强角钢在输电铁塔中的受力性能,以48根Q460高强角钢为研究对象,对高强角钢双向压弯受力性能进行了静力加载试验研究.研究了压杆不同长细比时高强角钢的破坏模式、承载力、变形性能、截面应变分布等受力状态.试验表明,构件绕连接肢发生弯曲变形,同时伴有绕角钢纵轴的扭转变形,小长细比试件大多为局部屈曲,大长细比试件为整体屈曲.有限元数值模拟了实际试件的受力性能,结果表明:有限元分析的极限承载力结果偏大,美国ASCE规范值偏于保守,试验值处于美国规范值和有限元分析值之间,且靠近于有限元值.在模型试验和仿真试验的基础上,提出了单边连接高强角钢等效长细比公式.因此,试验结果可以为Q460高强角钢设计提供依据.  相似文献   

3.
输电线铁塔钢材的低温力学和冲击韧性试验   总被引:1,自引:0,他引:1  
为选择合适的输电线铁塔钢材,防止杆塔因构件发生低温脆性断裂引起的破坏,通过系列室温和低温条件下的单轴拉伸和冲击试验,研究了输电线铁塔用Q345B、Q420B、Q460C钢管和Q345B、Q420B角钢钢材的力学性能和冲击韧性;通过对比分析,评价了钢管和角钢钢材的塑性指标;利用Boltzmann函数曲线拟合,得到了钢管和角钢钢材的韧-脆转变温度.结果表明:钢材的屈服强度和抗拉强度随温度的降低而增大,其塑性指标均能满足规范要求;钢材夏比冲击功值随温度降低而减小,Q345B钢管和角钢钢材的韧脆转变温度较高,抗低温冷脆性能较差,结合拉伸和冲击试验结果,建议在寒冷地区优先采用Q420B钢管,不宜采用Q345B角钢.  相似文献   

4.
为了研究输电塔中Q460高强角钢一端偏心压杆受力性能,通过试验与理论计算方法分析了受压试件的整体稳定和局部屈曲情况,试件轴心端采用球铰和双刀口支座模拟,考察了不同端部条件和残余应力等对角钢受力性能的影响,结果表明:试件轴心端无论采用球铰支座或双刀口支座形式,均能较准确反映角钢构件的受力性能,残余应力对试件承载力影响小于5%。比较了试验、有限元法、美国《输电铁塔设计导则》(ASCE10—1997)和中国《架空送电线路杆塔结构设计技术规定》(DL/T5154—2002)对角钢极限承载力值的不同处理方法,指出采用DL/T5154—2002标准计算方法对高强钢杆件承载力得出的结果偏保守,在此基础上,提出了对实际材料强度除以抗力分项系数rR=1.111后改造的ASCE设计方法。  相似文献   

5.
高强度钢材Q460C断裂韧性低温试验   总被引:2,自引:0,他引:2  
研究了高强度结构钢材低温下的断裂韧性特征。对厚度为14mm的Q460C建筑钢材进行了裂纹尖端张开位移δm低温下的试验研究,并进行了试件断口电镜微观分析。结果表明-40℃下的Q460C三点弯曲试件断口呈明显的脆性断裂机制。Q460C钢材的δm值随温度降低呈下降趋势,与Q235、Q345、Q390钢材低温下的δm值比较,Q460C的值最低,即断裂韧性相对较差。同时,还对试验结果进行了Boltzmann函数拟合分析,得到其韧脆转变温度及变化规律。结果表明:Q460C高强度建筑钢材的低温冷脆特征明显。  相似文献   

6.
通过合理设计化学成份,采用Ⅵ微合金化工艺,优化轧制工艺,开发出输电铁塔用Q420角钢。试制表明:生产的Q420角钢组织细小均匀,力学性能、焊接性能良好,产品完全满足超高压输电线路工程的要求。  相似文献   

7.
铁塔结构使用高强钢,能减轻结构自重,降低造价,节约能源,利于环保,具有良好的经济和社会效益.介绍了国内外学者针对高强钢铁塔双肢连接主材受压构件稳定受力性能方面取得的研究成果,从高强钢初始残余应力、钢材强度等级、板件局部屈曲性能、构件端部约束,以及构件整体失稳与板件局部屈曲的相关性等方面,分析了影响其稳定受力性能的因素及原因,为此类铁塔结构进一步的研究及设计提供参考.  相似文献   

8.
为解决现有单边螺栓锚固不足和安装复杂的问题,提出一种高强钢板-螺栓连接副.将高强钢板焊成芯筒置于钢管柱内并开孔攻丝,采用普通高强螺栓即可实现与钢梁连接节点的单边张紧.为研究攻丝高强钢板替代螺母的可行性,考察连接副的极限抗拉性能和破坏模式,探讨能够与高强螺栓配合的最优钢板厚度,对一系列不同钢板厚度和螺栓强度等级的钢板-螺栓连接副进行单调抗拉试验研究.试验中选取Q460C、Q345B、45号钢三种钢材和M16、M20、M24三种规格10.9级高强螺栓作为研究变量.结果表明,Q460C和Q345B均可以作为45号钢的替代材料,同时满足高强螺栓的强度要求和钢结构的焊接要求,采用强度较高钢材可以减少连接副用钢量.为保证钢板-螺栓连接副不发生钢板螺纹滑牙破坏,建议Q460C钢板厚度不宜小于螺栓公称直径d;Q345B钢板厚度不宜小于d+(1~2) mm,不宜采用贴焊加厚的叠合钢板.  相似文献   

9.
采用ANSYS有限元软件对Q460高强角钢两端偏心压杆进行了三维实体建模,有限元数值模拟分析,除考察了不同长细比,不同截面与初弯曲等模型参数之外,还考察了残余应力对高强单角钢稳定承载力的影响.由分析可知:构件绕平行于连接板的轴线发生弯曲变形,同时伴有绕角钢纵轴的扭转变形,残余应力对构件承载力影响小于5%.有限元分析的构件稳定承载力与实验值和理论值进行对比,结果表明:有限元值比试验值和美国<输电铁塔设计导则>(ASCE10-1997)高-8.89%~+11.1%a和-0.39%~+35.36%,有限元分析值和试验值吻合较好.因此.有限元分析结果是可靠的,可以通过有限元法分析两端偏心受压高强角钢的受力性能.  相似文献   

10.
为了得到高强度Q460钢梁高温下的抗火性能,采用有限差分法推导了高温下高强度Q460钢梁的截面温度计算方法并计算了温度分布,提出了钢梁各个组件温度的修正公式。基于常温下钢梁的整体稳定临界弯矩,根据Q460钢材的高温力学性能参数,分析得到了高强度Q460钢梁高温下临界弯矩和整体稳定验算参数;并利用等效刚度法考虑了温度不均匀分布的影响,研究了高强度Q460钢梁在不均匀温度下的极限承载力、临界温度和稳定系数。  相似文献   

11.
高强钢板钻孔攻丝后替代螺母,与高强螺杆组合成一种新的单边螺栓连接副,可用于钢管柱框架节点.为研究钢板组合螺栓抗拉承载力和破坏机理,在本组试验研究的基础上对4类钢板组合螺栓共64个试件进行单调拉伸数值模拟,以板厚和螺杆直径为研究变量,包括Q345B、45号钢、Q460C和Q690D四种钢材和10.9级M16、M20、M24、M27和M30五种规格高强螺栓.结果表明:Q345B、Q460C和Q690D均可作为45号钢的替代材料;钢板组合螺栓在锚固可靠的条件下,可按螺杆螺纹极限抗拉荷载的70%作为其抗拉设计值;钢板较薄时,发生钢板螺纹滑牙破坏,螺栓拔出,螺杆最大应力位于锚固区,钢板向外凸起,凸起量大于支点间距的1/200;钢板较厚时,发生螺杆拉断破坏,螺杆最大应力位于构造区,两种破坏模式中钢板的最大应力均位于钢板螺纹第一扣处.为保证钢板组合螺栓不发生钢板螺纹滑牙破坏,建议Q345B钢板厚度不宜低于1.15d;Q460C钢板厚度不宜低于1.10d;Q690D钢板厚度不宜低于0.95d,根据弹性力学和螺纹传力机理推导高强钢板组合螺栓抗拉承载力公式,公式计算结果与有限元结果吻合良好,研究成果可为钢板组合螺栓的设计提供参考.  相似文献   

12.
以国家电网公司应用Q420高强钢首批输电线路试点工程(500kV汉江大跨越直线塔主材采用Q420钢管)为背景,对3种类型的K型相贯节点进行了足尺试验研究.试验表明,在主管轴力较高时,节点的破坏以主管的局部塑性变形破坏为主,节点的破坏很大程度是由节点域主管的变形来表现的;K3型节点加劲板的设置,能有效地将两支管上的力均匀传给主管,从而改善节点支管与主管相贯线区域的受力性能,这就是K3型节点的实测承载力较K2型节点提高了25%的原因.借用中国钢结构设计规范中的计算方法进行了比较和推析,发现对K型高强钢节点简单地套用现有的简化公式和计算公式不可取.  相似文献   

13.
局部屈曲是钢结构构件的一种破坏模式,钢结构发生局部屈曲破坏时,屈曲应力小于钢材的屈服强度。为了研究高温下高强Q690钢柱的局部稳定性能,采用有限元软件ABAQUS建立有限元模型,模型采用其他学者完成的Q460钢柱轴心受压局部屈曲试验进行验证,考虑宽厚比、温度、初始缺陷、残余应力和翼缘与腹板之间相互作用的影响,对高强Q690钢柱进行参数分析。研究结果表明:宽厚比对局部屈曲有显著影响,宽厚比的增大导致试件极限承载力的降低;初始缺陷和残余应力对局部屈曲应力有较大影响,且试件的极限承载力随着温度的升高而明显下降。基于有限元分析结果提出了适用于高强Q690钢柱高温下的局部稳定设计方法和宽厚比限值,并与GB 50017-2017、Eurocode 3和ANSI/AISC 360-10中的设计方法进行了比较。  相似文献   

14.
铰支轴心受压高强钢管的局部稳定强度折减系数   总被引:1,自引:1,他引:0  
中国特高压输电塔发展趋势是采用高强钢管塔,国内相关规范中Q420以上强度钢材设计参数不足.对20组不同材料和几何尺寸的高强钢管进行两端铰支轴压试验,并结合有限元计算及国内外相关规范分析其整体和局部稳定性.结果表明,Q420、GR65及Q460钢管轴压强度高于中国规范中对应计算值,且随屈服强度上升这种提高越明显.得出局部稳定强度折减公式是有限元计算值和试验值的下限,可供特高压输电杆塔设计作参考.  相似文献   

15.
为探讨单调拉伸及低周疲劳荷载下开孔Q460高强钢板的力学性能,对33个开孔材性试件进行试验测试,通过分析试件的应力-应变曲线、骨架曲线和耗能能力对比图,探讨了试件设计尺寸、开孔数量及加载模式等因素对开孔材性试件的强度、刚度、延性和耗能能力等力学性能的影响规律。在此基础上,使用ANSYS有限元分析软件建立了疲劳加载作用下开孔材性试件的精细有限元模型,并与材性试验结果进行了对比分析,验证了模型的正确性和可靠性。试验结果表明,开孔对Q460高强钢试件的力学性能有不利影响,导致应力集中加剧;在疲劳荷载作用下,增加试件轴向的开孔数量有利于提高试件的延性,但对钢材的耗能能力产生不利影响。开孔试件在低周反复荷载下易在开孔位置发生应力集中导致裂缝产生,且孔洞四周存在鼓曲现象,断后试件整体呈马鞍形。试件厚度对高强钢的破坏模式及力学性能影响显著,在低周疲劳荷载下,开孔试件的破坏形态与未开孔试件差别较大,且随厚度增加呈现两种不同的断口形态,随着试件设计厚度增加,断口截面与试件横截面呈约45°夹角和锯齿形交错相嵌两种断口类型;且随着钢材厚度的增加,试件的抗拉强度、延性和耗能能力均有所提高。加载模式对开孔Q460高强钢的抗拉强度影响较小,随着荷载循环圈数的增加,Q460高强钢的延性降低,耗能能力提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号