首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了考察软岩浸水后软化行为对单轴抗压特性的影响,取河南陈四楼煤矿二1煤底板太原组灰岩为试验材料,在三种不同的加载速率下,对不同浸水时间下试样进行单轴压缩试验,得到关于灰岩抗压特性的浸水效应。试验结果表明:在一定的加载速率下,随浸水时间增加,抗压强度和弹性模量逐渐减小,且降低幅度越来越小;随浸水时间增加,试样逐渐由弹性变形转变为塑性变形,但极限应变基本不变;试样内部不可逆的损伤破坏加剧,总应变能和弹性能与浸水时间呈指数关系,耗散能随浸水时间的变化可以用线性关系拟合。  相似文献   

2.
The spatiotemporal analysis of seismic zones characterised by the scattering and accumulation of strain energy in the roof-rocks of the excavated longwall panel where inelastic or elastic deformations occurred during hard coal seam mining is discussed. The studied longwall panel was designed to utilize the effect of partial stress relaxation caused by the earlier extraction of the coal seams located above. A full seismic moment tensor and spectral source parameter analyses were used to obtain information about the degree of inelastic and elastic coseismic deformations. This study also showed that these deformation changes correspond to variation in the Benioff strain release characteristics. Next, analyses of deformation zones were compared with the relationship between radiated energy and the excavated volume of rocks per month. The concept of balanced seismic energy release assumed the exponential increase of released seismic energy with the increase in the volume of excavated rock. Discrepancies between the observed and predicted radiated energies indicated that strain energy in selected zones in the rock mass was either scattered if the prediction was overestimated, or accumulated if underestimated. Moreover, the study showed that elastic deformation in one zone can lead to inelastic deformation in the same zone.  相似文献   

3.
利用 MTS815 Flex Test GT 岩石力学试验系统及声发射(AE)实时监测系统,对取自平顶山和淮安两处矿井的纯盐岩进行了单抽加卸载试验,得到了岩盐的应力-应变加卸载曲线、声发射振铃计数率和能量率曲线,并且从能量与声发射的角度研究了纯岩盐变形破坏过程的基本特征。通过研究表明,岩盐单轴加卸载条件下,弹性变形阶段很短,屈服过程产生很大的塑形变形,且峰后的变形过程没有应力的急剧下降,整个实验过程中加卸、载之间滞回环面积很微小。在整个实验过程中,弹性应变能占的比例非常的小;盐岩单轴加卸载变形破坏过程中,其耗散能随应变一直增加,且增长率递增,而当应力接近峰值时,增长率趋于恒定,耗散能曲线开始呈线性增长;弹性应变能在峰前一直增加,且增长率递减,在峰值处达到最大值,峰后开始下降。岩盐在试验初始阶段振铃计数率与能量率便大量产生,而后在屈服阶段呈现下降进入稳定发展期,直到峰值处,出现一个累计振铃计数和累计能量曲线的拐点,峰后以一个更高的速率稳定地且呈现阶梯状发展。本文对于盐岩储气库的水溶开挖和采气过程中逐渐卸载的应力环境施工过程有一定的实际指导意义。  相似文献   

4.
By using MTS815 rock mechanics test system, a series of acoustic emission (AE) location experiments were performed under unloading confining pressure, increasing the axial stress. The AE space–time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared, the influence mechanism of loading rates on the microscopic crack evolution were studied, combining the AE characteristics and the macroscopic failure modes of the specimens, and the precursory characteristics of coal failure were also analyzed quantitatively. The results indicate that as the loading rate is higher, the AE activity and the main fracture will begin earlier. The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate, and will transform from brittleness to ductility at critical velocities. When the deformation of the coal is mainly plasticity, the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious “step”, which can be defined as the first failure precursor point. Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92–98%, which can be defined as the other failure precursor point. As the loading rate is smaller, the coal more easily reaches the latter precursor point after the first one, so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.  相似文献   

5.
Compared to intact coal, tectonic coal exhibits unique characteristics. The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system, and the mechanical and energy properties are analysed using experimental data. The results show that the stress–strain curve could be divided into four stages in a single cycle. The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate; irreversible strain and dissipated energy density increase exponentially with deviatoric stress, inversely proportional to the confining pressure and loading rate. The internal structure of tectonic coal is divided into three types, all of which are damaged under different deviatoric stress levels, thereby explaining the segmentation phenomenon of stress–strain curve of tectonic coal in the cyclic loading process. Tectonic coal exhibits nonlinear energy storage characteristics, which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation. In addition, the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy.  相似文献   

6.
深刻认识采动应力路径下岩体力学响应的加载速率效应,是科学界定实际工作面推进最优速率的重要基础。基于平煤矿区煤岩初始地应力环境,定量分析了千米级赋存深度煤岩保护层开采条件下应力演化特征,展开更为符合真实应力状态的不同加载速率下煤岩体力学行为实验模拟,同时与未考虑采动试验结果进行对比分析。研究结果表明:(1)常规三轴压缩试验,试样强度受加载速率影响较小,在1~4 MPa/min时并无明显变化,达到5 MPa/min时强度才有明显的上升,约为115 MPa。(2)随加载速率增加,采动过程中煤岩体强度呈现下降后上升再下降的趋势,1 MPa/min和4 MPa/min加载速率下煤岩体强度达到最大,其峰值应力约为64 MPa,较3 MPa/min提高了12%。(3)低加载速率下试件内部的微小裂隙可以充分发育、扩展,试样裂隙密度随加载速率增加呈减小趋势,其中1 MPa/min约为5 MPa/min的1.61倍,适当降低开采速度可提高瓦斯抽采效率。(4)不同开采速度煤岩在整个采动过程中体积应变不仅出现了相对初始状态的压缩现象,还出现了破坏阶段的体积膨胀,可将其作为采动特征,明显区别于未考虑采动下的体积压缩,且采动下煤岩强度明显偏小,破损程度更大。研究成果可为类似地质条件开展保护层开采设计奠定一定的理论基础。  相似文献   

7.
It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering. Based on the uniaxial loading-unloading experiments for five types of rocks, this paper investigated the energy evolution characteristics, and identified the damage and crack propagation thresholds. Also, the fragment size distributions of the rocks after failure were analyzed. The energy release rate(G_e) and energy dissipation rate(G_d) were then proposed to describe the change of energies per unit volume and per unit strain. Results demonstrated that the more brittle rocks had the shorter stage of unstable crack growth and the lower induced damage at crack damage thresholds. The evolution characteristics of the strain energy rates can be easily identified by the crack propagation thresholds. The failure intensity index(FI_d), which equals to the values of G_e/G_d at the failure point, was further put forth.It can account for the brittleness of the rocks, the intensity of rock failure as well as the degree of rock fragmentation. It was revealed that a higher FI_d corresponded to a lower fractal dimension and stronger dynamic failure.  相似文献   

8.
硬岩脆性指标与弹性应变能关系初探   总被引:1,自引:1,他引:0  
为探讨硬岩脆性指标与弹性应变能之间的关系,采用侧向应变差法确定起裂应力,以岩石起裂应力和峰值强度为桥梁,基于断裂力学理论和能量理论解释了脆性指标与弹性应变能内在的联系,并从两种岩石单轴压缩试验中构建了脆性指标与弹性应变能之间的函数关系.结果表明:脆性指标B_(13)、B_(14)与起裂弹性应变能(单变量)符合幂函数关系,脆性指标B_(15)、B_(16)与起裂弹性应变能(单变量)符合幂函数或线性函数关系,脆性指标B_(13)、B_(14)、B_(15)和B_(16)与峰值弹性应变能(单变量)之间无明显函数关系;新定义的脆性指标可由起裂和峰值弹性应变能(双变量)获得,或由起裂弹性应变能(单变量)获得,脆性指标与峰值弹性应变能关系式的构建,对于研究岩爆倾向性具有重要意义;根据新定义的脆性指标,利用两种岩石算例验证表明,采用起裂弹性应变能的岩石脆性指标计算方法具有一定的可靠性.通过这一研究,为岩石脆性指标与起裂弹性应变能关系的确定提供了一种新方法.  相似文献   

9.
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area, the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM) under the high stressstrength ratio. The creep damage was monitored using an electrical resistivity device, ultrasonic testing device, and acoustic emission(AE) instrument. The results showed that the CGBM sample has a creep hardening property. The creep failure strength(CFS) is slightly larger than the uniaxial compressive strength(UCS), ranging in ratio from 108.9% to 116.5%. The instantaneous strain, creep strain, and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests. The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process. The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model. Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process. The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity, ultrasonic pulse velocity(UPV), and AE signals.  相似文献   

10.
Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force?displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fracture initiation, propagation and coalescence corresponds to the change of irreversible deformation.  相似文献   

11.
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.  相似文献   

12.
A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^-5, 10^-4 and 10^-3/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric ‘X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.  相似文献   

13.
The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect of rock bridge angle β and fissure angle α on mechanical properties and evolution characteristics of cracks.The results show that the peak strength,peak strain and elastic modulus of defected specimens decrease comparing with those for intact sample,and show a decreased trend firstly and then increase with β changing from 0° to 90°.The peak strength and elastic modulus achieve the minimum value as the rock bridge angle is 60°,while the peak strain reaches the minimum value with the rock bridge angle of 45°.The crack initiation of tested rock samples occurs firstly in stress concentration areas at tips of prefabricated fissures under uniaxial compression,and then propagates constantly and coalescences with the prefabricated hole.Some secondary cracks initiate and propagate as well until buckling failure happens.The rock bridge angle has a great influence on crack initiation,coalescence,final failure mode,crack initiation stress and transfixion stress.The peak strength varies significantly,while the elastic modulus and peak strain change slightly,and the failure modes are also different due to the influence of fissure angle.  相似文献   

14.
Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipation rate is proposed as a novel indicator of coal deformation and failure under static and dynamic compressive loads. The relationship between stress-strain, uniaxial compressive strength, displacement rate, loading rate, fractal dimension, and energy dissipation rate was investigated through experiments conducted using the MTS C60 tests(static loads) and split Hopkinson pressure bar system(dynamic loads). The results show that the energy dissipation rate peaks are associated with stress drop during coal deformation, and also positively related to the uniaxial compressive strength. A higher displacement rate of quasi-static loads leads to an initial increase and then a decrease in energy dissipation rate, whereas a higher loading rate of dynamic loads results in larger energy dissipation rate. Theoretical analysis indicates that a sudden increase in energy dissipation rate suggests partial fracture occurring within coal under both quasi-static and dynamic loads. Hence, the energy dissipation rate is an essential indicator of partial fracture and final failure within coal, as well as a prospective precursor for catastrophic failure in coal mine.  相似文献   

15.
孤岛工作面煤体和巷道受周边开采扰动影响,煤体受循环荷载作用存在卸荷力学行为而表现出动态破坏特性。为探讨不同路径下煤体力学特性,利用TAW-2000三轴电液伺服刚性试验机分别进行常规三轴(T)、三轴循环荷载(TC)以及相应卸围压试验(TU、TCU),分析不同围压下煤体卸围压强度、变形、声发射事件以及能量耗散演化特征,开展扰动区域煤体卸荷特性研究。结果表明:三轴循环荷载卸围压(TCU)下拟合回归强度低于常规三轴卸围压(TU)下拟合回归强度,高于三轴循环荷载(TC)下拟合回归强度;卸围压(TU、TCU)应力路径下声发射峰值滞后应力峰值,AE振铃计数在煤样破坏点突增,高于常规三轴(T、TC)数值;循环过程(TC、TCU)中应力水平达到峰值强度的70%时,Kaiser效应逐渐消失,Felicity效应出现;循环加卸载(TC)试验中,相对应力水平达到60%,煤样损伤加剧,弹性应变能占比逐渐减小;围压越大,煤样破坏时冲击能指数越小,三轴循环荷载(TC)冲击能指数<常规三轴(T)冲击能指数<三轴循环荷载卸围压(TCU)冲击能指数<常规三轴卸围压(TU)冲击能指数;围压对煤样有横向束缚...  相似文献   

16.
岩体变形特性及基床系数与基础内力、最终变形量和变形的均匀性直接相关,合理确定基床系数值对高层特别是超高层建筑至关重要。以成都市某超高层建筑论证为依托,针对建筑物持力层中风化泥质软岩,在井下平洞内进行不同压板尺寸和形状的平板载荷试验,并取得原位试样进行室内岩块单轴抗压强度、常规三轴压缩试验和直接剪切试验,根据室内及原位试验资料分析了岩体单轴抗压强度、弹性模量、承压板尺寸与基床系数的关系。结果表明:地基基床系数具有随地基岩石单轴抗压强度增加而增加的趋势;较小承压板试验数据离散性较大,较大压板试验数据离散性较小;如果红层软岩基床系数按照规范建议的黏土或砂土经验公式进行修正,会引起较大误差;红层软岩(中等风化泥岩)地基的基床系数与载荷板尺寸间呈双曲线型经验关系,据此建议对建筑物红层软岩地基基床系数进行修正;对红层软岩采用500 mm方形承压板试验获取的基床系数离散性较小。  相似文献   

17.
The surrounding rock in tunnelling engineering and coal mining will sometimes be exposed to high temperature. Rock failure is the result of energy dissipation, and the study of the evolution and transformation behavior of energy is of great significance for the in-depth understanding of the deformation and failure of rock after high temperature. This study analyzed the intrinsic connection between mechanical properties and acoustic emission (AE) energy under temperature effect. Based on the energy dissipation and release theory, the distribution and transformation of energy was analyzed, and the energy self-incentive and self-inhibition (EII) model was further established. The main findings are that temperature effect affects the confidence interval trend and the value of AE energy rate, which is related to the change in mechanical properties. The ability of sandstone to store elastic strain energy after exposure to high temperature is independent of the mechanical properties. In this study, the ratio of dissipated energy to elastic energy is used to characterize the stable state of the sandstone system, which can be used as the energy indicator of rock failure precursor. During the absorption, storage, and release of energy before the peak stress, there exists self-incentive and self-inhibition of energy (control behavior).  相似文献   

18.
针对回采时反复采动作用下的保护层开采扰动煤岩极易诱发巷道围岩失稳的问题,采用分级循环荷载模拟实际回采工程中采动应力的长期作用,研究保护层开采扰动煤岩在循环荷载作用下的力学强度及变形破坏特性. 试验结果表明,在加卸载过程中,受保护层开采扰动煤样的体积膨胀变形明显,煤样内部结构破坏程度比未受保护层开采扰动煤样更高. 在加卸载后期,受保护层开采扰动煤样表现为塑性破坏,未受保护层开采扰动煤样发生明显的脆性破坏. 相比于未受保护层开采扰动煤样,受保护层开采扰动煤样的峰值强度下降,单位体积(直径为50 mm,高度为100 mm)内的煤样裂隙体积显著增加,峰值强度和裂隙体积占比均沿煤层走向分布较为均匀. 处于断层带的未受保护层开采扰动煤样的彼此物性差异较大. 受保护层开采扰动煤样比未受保护层开采扰动煤样更符合“煤岩破坏时,裂隙空间复杂程度与峰值强度存在反向对应分布”规律.  相似文献   

19.
To evaluate the coal burst proneness more precisely, a new energy criterion namely the residual elastic energy index was proposed. This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal. Five types of coals from different mines were tested, and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera. The results showed a linear relationship between the elastic strain energy density and input energy density, which confirms the linear energy storage law of coal. Based on this linear energy storage law, the peak elastic strain energy density of each coal specimen was obtained precisely. Subsequently, a new energy criterion of coal burst proneness was established, which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens, the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined. The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.  相似文献   

20.
In multi-seam mining, the interlayer rock strata between the upper coal seam(UCS) and the lower coal seam(LCS) appear damage and strength weakening after mining the UCS. Ground stability control of the gob-side entry retaining(GER) under the gob with close distance coal seams(CDCS) is faced with difficulties due to little attention to GER under this condition. This paper focuses on surrounding rock stability control and technical parameters design for GER under the gob with CDCS. The floor rock strata damage characteristics after mining the UCS is first evaluated and the damage factor of the interlayer rock strata below the UCS is also determined. Then, a structural mechanics model of GER surrounding rock is set up to obtain the main design parameters of the side-roadway backfill body(SBB) including the maximum and minimum SBB width calculation formula. The optimal SBB width and the water-to-cement ratio of high water quick-setting material(HWQM) to construct the SBB are determined as 1.2 m and 1.5:1.0,respectively. Finally, engineering trial tests of GER are successfully carried out at #5210 track transportation roadway of Xingwu Colliery. Research results can guide GER design under similar mining and geological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号