首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
建立了原油顺序输送混油模型,利用PHOENICS软件进行了数值模拟,并得出了混油浓度变化图象和曲线.表明在原油管道顺序输送过程中粘度差的影响,给出了不同管道倾角条件下浓度场的分布;同时也验证了停输时,密度大的油品在管道下方所形成混油段长度无明显增大现象且小于油品以相反的方向输送时所形成的混油段长度.研究结果对于减少停输工况下的混油与停输再启动混油界面的跟踪与切割具有理论指导意义.  相似文献   

2.
针对管道输送成品油时的混油量计算问题,采用多相流模型,建立顺序输送混油控制方程,采用有限体积法进行了数值求解。以0#柴油和90#汽油为输送介质,对成品油由上至下和由下至上流经Z型管的2种情况进行了数值计算。研究结果表明,成品油流经Z型管水平管段时,相对于管轴混油段呈不对称分布;在竖直管段,柴上汽下运行时混油量比柴下汽上运行时大;前汽后柴运行时截面的体积分数分布比前柴后汽运行时均匀。  相似文献   

3.
针对成品油管道沿线落差较大且出现翻越点时,管路变径对成品油顺序输送混油比例产生影响的问题,应用C FD软件多相流模型,以汽油和柴油作为交替输送对象,建立顺序输送混油控制方程,分别对变径位置在弯管前和弯管后两种情况进行数值计算,得到了混油量分布云图,分析了不同输送顺序对混油体积分数的影响。结果表明,弯管前变径时,后行柴油和后行汽油的混油段长度大致相等,后行柴油楔入到前行汽油中的量较多;弯管后变径时,后行柴油的混油段较长,沿轴向各截面的平均体积分数不均匀。因此,成品油管道通过翻越点时,选取变径位置在弯管前,并多采用前行柴油后行汽油的输送方式有助于减少混油量。  相似文献   

4.
在紊流模型基础上, 建立了顺序输送混油新的模型,并利用PHOENICS软件对停输前后混油段浓度分布进行了数值模拟,给出了混油浓度变化图象和曲线.研究结果表明:在竖直管道顺序输送过程中密度差对层流边界层的影响会表现的比较明显且大于粘度差的影响.同时也验证了停输时,密度大的油品在管道下方所形成混油段长度无明显增大现象且小于油品以相反的方向输送时所形成的混油段长度.研究结果对于减少停输工况下的混油与停输再启动混油界面的跟踪与切割具有理论指导意义.  相似文献   

5.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,生成了顺序输送混油控制方程。针对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段的长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

6.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,生成了顺序输送混油控制方程。针对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段的长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

7.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

8.
对大庆原油和俄罗斯原油顺序输送时,因大庆原油粘度较高,所以顺序输送时对混油量的影响较大,基于顺序输送混油机理,建立了顺序输送混油控制方程,借助CFD软件采用有限体积法,对不同流速的顺序输送过程进行了数值计算,分析了在不同流态下大庆原油的粘度越低混油量越小的原因。同时,提出了如下建议:在混油交界面处,往大庆原油中加入适量的降粘剂或掺入适量的柴油降低其粘度,以减少顺序输送过程中大庆原油和俄罗斯原油的混油量。  相似文献   

9.
为研究顺序输送成品油管道混油在T型管处的分输问题,应用多相流模型,将90#汽油与0#柴油作为交替输送对象,建立了顺序输送混油控制方程。对汽柴油在不同输送顺序下形成的混油通过支管下载的过程进行数值计算,得到了混油量分布情况,分析了输送顺序不同时分输部分干线中混油对混油段的影响。结果表明,对干线管道中的混油通过沿线所设站场进行适量下载等混油处理,可显著缩短混油管段长度,减小管道末站对混油段下载的压力。  相似文献   

10.
在顺序输送成品油时,后行油品的输量有时会因故突然发生变化,从而导致混油特性的改变。针对此问题,以多相流模型为依据,建立了顺序输送混油控制方程,采用有限体积法进行了离散性数值计算。研究结果表明,混油特性随后行油输量的变化而变化,而且在不同时间段内的变化规律不同;后行油输量变大有助于减小混油量;当输送顺序不同时,后行油输量的变化对混油量增长速度的影响也不同。  相似文献   

11.
在地形复杂的地区,输送成品油时难免会经过高差、停输、下坡等不同工况的路径,而管道的倾角、停输的时间对下坡管道的混油特性有很大影响。借助于CFD的多相流模型,以三维倾斜管道为研究对象,分别就停输时间、倾角、输送顺序对混油特性的影响进行了数值模拟。研究结果表明:停输前,当前行汽油后行柴油时,管道的倾角越大,混油量越小,管道倾角越小,越易出现混油;当前行柴油后行汽油时,混油尾较长,倾角越大,混油量越大,管道倾角越小,混油量越小,但倾角对混油的影响较小;倾角对前行汽油后行柴油时混油量的影响大于前行柴油后行汽油时混油量的影响。停输后,在相同倾角下停输时间越长,混油量越大;在停输时间相同时倾角越大混油量越大。当前行柴油后行汽油时,随着停输时间的延长,混油越来越均匀,其倾角和管道的倾角一致,停输时间和倾角对前行汽油后行柴油时混油的影响较大。  相似文献   

12.
利用Fluent流体分析软件模拟海底管道停输温降过程,分析不同初始油温、不同环境温度下的温降过程,得出了与实际吻合较好的温降曲线。计算结果表明,管道停输0~20h温降速度很快,主要是因为该阶段管内原油的自然对流较强烈。停输20h后的一段时间内温降缓慢,降温在5℃以内,这是因为管内原油接近临界温度,原油黏度增大及蜡晶析出,使得自然对流强度减弱。初始油温和海水温度对停输温降影响非常明显。  相似文献   

13.
针对影响海底输油管道停输的因素复杂,难以对管道安全停输时间做出准确判断的问题,提出了海底输油管道安全停输时间预测的径向基函数(RBF)神经网络模型,综合考虑了各因素对输油管道安全停输的影响。以实测数据为基础,训练网络并验证了模型的预测准确性。研究结果表明,径向基函数神经网络预测模型对训练样本的拟合精度和对验证样本的仿真精度分别达到98.40%和97.33%,可对海底输油管道安全停输时间进行有效预测,为海底输油管道的安全输送提供重要依据。  相似文献   

14.
保温层失效比例对热油管道安全停输时间的影响   总被引:1,自引:1,他引:0  
针对热油管道的保温层由于特定原因而出现部分失效,进而导致在维修过程中安全停输时间难以控制的问题,结合有限容积法,建立了热油管道二维、非稳态模型。该模型考虑了凝固潜热的影响,对比分析了热油管在5种情况(即保温层未失效、1/8失效、1/4失效、1/2失效及全部失效)下的温降规律。在此基础上,运用SPSS软件,拟合了停输时间与热油的平均温度的关系曲线,最终确定了上述5种情况下的安全停输时间。研究结果表明,5种情况下管内热油温降规律基本相似,且安全停输时间分别为205、148、118、99和74h;由于凝固潜热弥补了部分散热损失,因此1/4失效和1/2失效情况下的安全停输时间差仅为19h。  相似文献   

15.
埋地热油管道停输三维非稳态传热过程的数值模拟   总被引:1,自引:1,他引:0  
针对埋地热油管道停输过程进行研究,结合有限差分法和有限容积法建立埋地热油管道正常运行及停输过程的非稳态传热模型,考虑了管道正常运行及停输过程中管内原油粘度,密度,比热,导热系数随温度的变化关系,同时考虑了停输过程原油凝固潜热对温降的影响,地表温度采用周期性边界条件,数值模拟了埋地热油管道运行至第二年3月末停输温降过程。研究表明,随着停输时间的延长,管道沿线各截面处管内原油固化过程各异且土壤温度场变化明显,确定合理停输时间,为管道安全启动提供理论指导。  相似文献   

16.
结合裸露管线的热力特性,建立管道停输时非稳态传热模型,分别计算了原油物性参数随温度变化和不随温度变化两种条件下的安全停输时间。结果表明,在原油物性参数不随温度变化的条件下所得结果与实际停输情况有很大差别,因此应考虑物性参数随温度的变化。在原油物性参数随温度变化的情况下,改变影响停输温降的因素如停输起始油温、环境温度、保温层厚度,计算了不同条件下的安全停输时间。计算结果表明,停输起始油温以及保温层厚度逐渐增大且增加幅度相同时,安全停输时间增加的幅度基本相同;外界环境温度逐渐升高且增加幅度相同时,安全停输时间的增长幅度越来越大。  相似文献   

17.
建立电伴热方式的稠油伴热管道二维非稳态模型,分析了管道的保温层厚度、伴热管个数以及位置参数对稠油管道安全停输时间的影响及其变化规律。研究结果表明,在单管伴热的情况下,管道的保温层厚度分别为60、70 mm和80 mm时,安全停输时间分别为26、30 h和34 h;在双管伴热的情况下,双管夹角的变化对安全停输时间的影响较小,安全停输时间约为36 h。  相似文献   

18.
针对成品油经过上、下坡时同种汽油与不同密度的柴油顺序输送时的混油问题,借助多相流模型,建立三维流动模型进行数值计算,研究了上、下坡顺序输送时的输送顺序、密度、管长对成品油顺序输送混油的影响。研究结果表明,上坡时在前行柴油工况下的混油长度大于前行汽油工况下的混油长度,混油量也大于前行汽油工况下的混油量;下坡时在前行汽油工况下的混油长度大于前行柴油工况下的混油长度,而且混油量也大于前行柴油工况下的混油量。当前行汽油后行不同密度的柴油时,柴油密度越小越有助于减少混油量。  相似文献   

19.
易凝高黏原油在加热输送过程中热量损耗严重, 遇故障停输后热量的散失更为迅速, 当所需停输的 时间超出安全停输时间时就会发生事故。因此, 研究原油的热力计算对管道的安全运行具有重要意义。对比了冬 夏两季原油停输温降的变化规律, 在停输时间不同的条件下, 对温降进行了数值模拟, 计算出原油停输前所需的出 站温度。对停输后的土壤和管道的温度场进行了三维数值模拟, 找出了出站温度不同时停输后原油和土壤温度场 的变化规律。在出站温度达到一定值后, 原油在所需的停输时间内可以保证安全再启动, 不会发生事故或造成安全 隐患。  相似文献   

20.
引入导热形状因子得到同沟敷设管道的管段总传热系数,建立了同沟敷设热油管道停输温降的计算模型,并采用PISO算法对停输瞬态问题进行模拟。利用西部管道沿线的历史数据及西部原油成品油同沟敷设热油管道的实际情况计算了沿线停输温降并进行了对比分析,找出了潜在的停输危险截面,为我国西北地区同沟敷设管道的设计与运营管理提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号