首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic and electrical transport properties of the La0.67Ca0.33Mn1-xO3 (x=0-0.16), which were prepared by the sol-gel method followed by sintering treatment at 1 450, 1 100 and 900 ℃, respectively, were investigated. Experimental results show that, with the increase of x, the resistivity of samples increases and the insulator-metal transition temperature shifts towards lower temperature. Meanwhile, the intrinsic megnetoresistance effect is weakened and the extrinsic magnetoresistance is enhanced. For the samples with x=0.16 and 0.10 sintered at 1 100 ℃ and 900 ℃, respectively, low field magnetoresistance as high as about 50% can be observed. Furthermore, for the samples sintered at 1 100 ℃ and 900 ℃, the grain size is not only controlled by about sintering temperature, but also by the absence of Mn content x.  相似文献   

2.
The ( 1 - x ) La0.67Ca0.33MnO3 ( LCMO ) + x Cr2O3 composites were synthesized by a new liquid phase method. The XRD and SEM meusurements reveal that few Cr2O3 were soluble in the LCMO structure and the lattice constant of LCMO almost did not change, while most Cr2O3 were distributed at the grain boundaries or on surfaces of the LCMO grains. In resistivity versus temperature meusurements, a metal-insalator transition was observed when x 〈 0.20. The resistivity increases and the metal-insalator transition temperature deereases with the increasing content of Cr2O3 . A random resistor network (RRN) model was used to simulate the transport property of the mixture samples. The simulation results agree with the experimental observations. The results show that the method is reasonable for understanding the electronic transport of the composites of the manganite.  相似文献   

3.
A new route to synthesize nanosized crystalline of (La0.67-xGdx)Sr0.33MnO3 (X=0.05, 0.10, 0.15, 0.20) perovskite-type complex oxides at calcination temperature of 600-1000℃ using the amorphous molecular alloy as precursors was reported. The precursor could be completely decomposed into complex oxide at temperature below 500℃ according to the TGA and DTA results. XRD demonstrates that the decomposed species is composed of perovskite-type structure at calcination temperature of 600℃ for 2 h. The particle size that depends on the calcination temperature of the precursor is in a range of 30-120 nm as determined by transmission electron microscopy (TEM). This method is effective and can be easily quantitatively controlled to synthesize nanosized perovskite-type complex oxides. The magnetic properties of (La0.67 xGdx)Sr0.33MnO3 nanocrystalline were preliminary studied.  相似文献   

4.
The thermal decomposition process of air-aged La203 in argon atmosphere was studied using nonisothermal TG-DSC. X-ray diffraction and TG-DSC analysis showed that the aged powder was composed of La(OH)3 with small amounts of oxycarbonate. The decomposition process of air-aged La2O3 involves the two-step decomposition of La(OH)3 and the decomposition of oxycarbonate. The kinetic analysis of the two-step decomposition of La(OH)3 was carried out using Coats-Redfern and isoconversion (Ozawa) methods. The kinetics of the two-step decomposition can be described in terms of the nucleation and growth model A (m=1.5, m is the model parameter) and A (m=2.5), respectively. The apparent activation energy for the first step is 136-144 (Coats-Redfern) and 137-164 kJ/mol (isoconversion). The apparent activation energy for the second step is 191-194 (Coats-Redfern) and 186-213 kJ/mol (isoconversion).  相似文献   

5.
The infuence of Cu dopant (x) and sintering temperature(Ts) on the troansport propeties of La2/3Ca1/3Mn1-xCuxO3 series samples prepared by Sol-Gel technique was investigated.X-ray diffraction patterns show that all the samples with different Cu dopant and sintering temperatures (Ts) are of single phase without obvious latice distortion.Experimental results indicate that the insulator-metal transition temperature is diectly related to the sintering temperature and Cu dopant x.It is interesting to observe that a proper amount of Cu dompant can substantially improve magnetoresistance effects.  相似文献   

6.
A new route to synthesize nanosized crystalline of(La 0.67–X Gd X )Sr 0.33 MnO 3 (X=0.05,0.10, 0.15,0.20)perovskite-type complex oxides at calcination temperature of 600-1000°C using the amorphous molecular alloy as precursors was reported.The precursor could be completely decomposed into complex oxide at temperature below 500°C according to the TGA and DTA results.XRD demonstrates that the decomposed species is composed of perovskite-type structure at calcination temperature of 600°C for 2 h.The particle size that depends on the calcination temperature of the precursor is in a range of 30-120 nm as determined by transmission electron microscopy(TEM).This method is effective and can be easily quantitatively controlled to synthesize nanosized perovskite-type complex oxides.The magnetic properties of(La 0.67–X Gd X )Sr 0.33 MnO 3 nanocrystalline were preliminary studied.  相似文献   

7.
Measurements of crystal structures, electrical and magnetic properties for the electron doped BixCa1-xMnO3 (0〈x≤〈0.33) reveal the presence of a variety of notable changes in correlation with magnetic transitions and charge ordering. Samples with x〈0.2 in general show a clear ferromagnetic transitions around 130 K. On the other hand, samples with 0.2≤x≤0.33 show much more complex low-temperature magnetic properties perhaps due to the coupling between the magnetic states and orbital/charge ordering. Structural transformations and structural modulations in the x=0.25 and 0.33 samples have been observed by transmission electron microscopy.  相似文献   

8.
To study the effect of long chain molecule and surface active agent on non-Newtonian fluid properties, rheological experiments on two different fluids have been done. The first group of the fluid is the hydroxyethyl cellulose water solution, and the second is the water solution containing the mixture of dodecyl- triethyl ammonium bromide and lauryl sodium sulfate. With the increasing shear rate, shear thinning phenomenon appears in the first group of solution, and a spe- cial shear thickening-shear thinning phenomenon appears in the second group. It is considered that the special rheological phenomenon is caused by the difference between the aggregating and the departing speed of the colloidal particles formed in the fluid. The difference between the two speeds relates with the shear rate. The experiment results indicate that the rheological properties can be designed by choosing proper additives at a certain shear rate, and such a fluid with special vis- cosity variation should be included in the classification of the non-Newtonian fluid.  相似文献   

9.
The molar heat capacities of La2Mo209 and La1.9Sr0.1MO209-δ were obtained using the differential scanning calorimetry (DSC) technique in a temperature range from 298 to 1473 K. The DSC curve of La2Mo209 showed an endothermal peak around 834 K corresponding to a first-order monoclinic-cubic phase transition, and the enthalpy change accompanying this phase transition is 5.99 kJ/mol. No evident endothermal peak existed in the DSC curve of La1.9Sr0.1MO209-δ, but a broad thermal anomaly existed in its heat capacity curve at around 832 K. In addition, the heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ began to decrease at 1196 and 1330 K, respectively. The non-transitional heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ were formulated using multiple regression analysis in two temperature ranges.  相似文献   

10.
By using the advanced instrumentation of a Computer Controlled Scanning Electron Microscope (CCSEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF), the ash composition and the mineral components of six typical Huainan coals of different origins were studied. The transformation of mineral matter at high temperatures was tracked by XRD in reducing conditions. The quartz phase decreased sharply and the anorthite content tended to increase at first and then decreased with increasing temperatures. The formed mullite phase reached a maximum at 1250 ℃ but showed a tendency of slow decline when the temperature was over 1250 ℃. The mullite formed in the heating process was the main reason of the high ash melting temperature of Huainan coals. Differences in peak intensity of mullite and anorthite reflected differences in phase concentration of the quenched slag fractions, which contributed to the differences in ash melting temperatures. The differences in the location of an mnorphous hump maximum indicated differences of glass types which may affect ash melting temperatures. For Huainan coal samples with relatively high ash melting tempera- tures, the intensity of the diffraction lines for mullite under reducing condition is high while for the samples with relatively low ash melting temperature the intensity for anorthite is high.  相似文献   

11.
A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.  相似文献   

12.
Kinetics of carbothermic reduction of manganese oxide and the catalyitic catalytic effect of La2O3 on the reduction have been studied by the measurement of mass loss in N2 atmosphere at differnet temperatures and followed by SEM analysis.It is concluded that the kineticxs of carbothermic reduction of manganese oxide is divided into three stages:gas diffusion controlling stage,carbon gasification controlling stage and solid state diffusion controlling stage .La2O3 has catalytic effect on the reduction.The catalytic effect of La2O3 increases with the added amount of La2O3.SEM analysis shows that the catalytic mechanism is that La2O3 promotes the transfer of oxygen ions so that cabon gasifying is catalyzed and thus carbotherimc reduction of MnO2 is Catalyzed.  相似文献   

13.
Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.  相似文献   

14.
A novel electrochemical oxygen sensor has been developed by using Laβ-Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor hot also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of Laβ-Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both Laβ-Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for Laβ-Al2O3 oxygen sensor was discussed too.  相似文献   

15.
An approach of limit state equation for surrounding rock was put forward based on deformation criterion.A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not iterative circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.  相似文献   

16.
Three different nitrogen ion doses were implanted into a Ti6A14V alloy to improve its mechanical surface properties for the application of artificial joints. The titanium nitride phase and nitrogen element distribution profile were characterized with X-ray photoelectron spectroscopy (XPS). Nano-indentation tests were carried out on the surface of the Ti6A14V alloy and implanted samples on a large scale of applied loads. The XPS analysis results indicate that nitrogen diffuses into the titanium alloy and forms a hard TiN layer on the Ti6A14V alloy. The nanohardness results reveal that nitrogen ion implantation effectively enhances the surface hardness of Ti6A14V. In addition, the nanohardness clearly reveals load dependence over a large segment of the applied loads. Thus a concept of nanohardness fractal dimension is first proposed and the dual fractal model can effectively describe nonlinear deformation in indentation areas on the Ti6A14V surface. The fractal dimension shows a decreased trend in two regions of applied loads, indicating a decrease of the self-similarity complexity in surface indentation owing to an increase in nanohardness after nitrogen ion implantation.  相似文献   

17.
In this work,a comprehensive comparison regarding the impacts of M (M=Cu,Co,Mn) substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx (M=Cu,Co,Mn; x=0-4) alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun (M=None,Cu) alloys display an entire nanocrystalline structure,whereas the as-spun (M=Co,Mn) alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M (M=Co,Mn) for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M (M=Co,Mn) substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M (M=Cu,Co,Mn) substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M (M=Cu,Co,Mn) content.Particularly,the M (M=Mn) substitution results in a sharp drop in the hydriding kinetics when x=4.The M (M=Cu,Co,Mn) substitution ameliorates the dehydriding kinetics dramatically in the order (M=Co)〉(M=Mn)〉(M=Cu).The electrochemical kinetics of the alloys visibly grows with Mcontent rising for (M=Cu,Co),while it first increases and then declines for (M=Mn).  相似文献   

18.
Microstructure and electrical properties of La2O3-doped ZnO-Bi2O3 thin films prepared by sol-gel process have been investigated. X-ray diffraction shows that most diffraction peaks of ZnO are equal, and the crystals of ZnO grow well. Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness. The nonlinear V-I characteristics of the films show that La2O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion, with the leakage current of 0.25 mA, the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.  相似文献   

19.
Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.  相似文献   

20.
The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolation network and physical properties of graphite/antimony composites. The result shows that there are two important factors to enhance friction and wear behaviour of graphite/antimony composites at high temperature: 1) the formation of the pore network in the preform, which is called the first percolation and 2) the optimization of infiltration method in the process of infiltrating antimony, which is called the second percolation. By adding some pyrolysate and controlling the roasting process, perfect net pores and sub-micron percolation microstructure may be formed in the graphite preform. By con- trolling the infiltration process, the saturation of molten antimony infiltrating into perfect pores can be optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号