首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill’s yield criterion and the Rankine’s yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.  相似文献   

2.
In order to overcome the nonlinearity of Mises criterion, a new linear yield criterion with a dodecagon shape of the same perimeter as Mises criterion was derived by means of geometrical analysis. Its specific plastic work rate expressed as a linear function of the yield stress, the maximum and minimum strains was also deduced and compared with that of Mises criterion. The physical meaning of the proposed yield criterion is that yielding of materials begins when the shear yield stress τs reaches the magnitude of 0.594σs. By introducing the Lode parameter, validation of evolution expressions of the proposed yield criterion with those based on Tresca, Mises and TSS criteria as well as available classical yield experimental results of various metals shows that the present results intersect with Mises results and coincide well with experimental data. Moreover, further application to the limit analysis of circle plate as an example is performed to demonstrate the effectiveness of the proposed yield criterion, and the subsequent comparison of limit loads with the Tresca analytical solutions and Mises numerical results shows that the present results are higher than the Tresca analytical results, and are in good agreement with the Mises numerical results.  相似文献   

3.
1 Introduction Two-flux method is considered as a simple model and can be used to predict heatflux in 1-D radiative heat transfer. In the original two-flux method[1,2], the radiation fieldwas assumed to be isotropic. But for gas-particles mixture in combustion environments,the scatterings of particles are usually anisotropic, and the original two-flux methodgives critical errors when ignoring this anisotropy. It is desirable to have a two-flux ra-diative transfer model to be applied rega…  相似文献   

4.
Commercially pure titanium( CP Ti) sheets show typical planar anisotropy due to inherently crystallographic texture and rolling process. To characterize the initial,planar,plastic anisotropy of CP Ti sheets in forming process,uniaxial tensile tests of cold-rolled TA1 sheets at 0°,45° and 90° to the rolling direction were performed at room temperature,corresponding stress-strain curves and Lankford coefficient( r value) were obtained. Based on Hill'48 and Barlat'89 yield criteria,the anisotropic behavior of TA1 sheets was investigated. In order to verify the accuracy of two models,the experimental values of yield stress and r were compared with predicted ones. It revealed that Barlat '89 criterion with M = 6 is the best agreement with experimental data,and the obtained model can be used in the simulation of forming process.  相似文献   

5.
This paper presents a novel LMI criterion for electric power system stability with multiple time-delays.Initially,the linear time-invariant model of the power system with multiple delays is constructed,subsequently,the former criteria and the novel criterion of this paper are demonstrated in this paper,and the novel criterion is fully proved according to Lyapunov direct method.Specifically,the proposed criterion utilizes a properly simplified Lyapunov-Krasovskii functional,and no free-weighting matrix is introduced in the formation of new criterion,as a consequence,the calculation efficiency is remarkably enhanced.A typical second-order delay system,a single-generator-infinite-bus system and the WSCC 3-generator-9-bus delay system are taken to validate the effectiveness and efficiency enhancement of the proposed criterion.The numerical results indicate that the criterion of this paper can generate the same stability margin with the former ones.Further,the numerical results also verify that the proposed criterion’s efficiency is substantially boosted and calculation time is greatly curtailed.  相似文献   

6.
7.
Unified characteristics line theory of spacial axisymmetric plastic problem   总被引:4,自引:0,他引:4  
The unified strength theory proposed by Yu in 1991 is extended to special axisymmetric problem. A unified special axismymmetric characteristics line theory based on the unified strength theory is proposed. This theory takes account of different effects of intermediate principal stress on yielding or failure and the SD effect (tensile-compression strength difference) of materials. Various conventional axisymmetric characteristics line theories, whihc are based on the Haar-von Karman plastic condition, Szczepinski hypothesis, Tresca criterion, von Mises criterion and Mohr-Coulomb theory, are special cases of the new theory. Besides, a series of new spacial axisymmetric characteristics fields for different materials can be introduced. It forms a unified spacial axisymmetric characteristics theory. Two examples are calculated with the new theory, the results are compared with those obtained by the finite element program UEPP and those based on the Mohr-Coulomb strength theory. It is shown that the new theory  相似文献   

8.
A model is proposed to describe the passengers’route choice behaviors in urban railway traffic with stochastic link capacity degradation by considering two types of demand,sensitive and insensitive passenger.The insensitive passengers choose their route without paying much attention to congestion.To the contrary,sensitive passengers who consider route congestion choose travel route based on generalized cost.An equilibrium state is given by variational inequalities in terms of travel generalized cost,which is represented by the combinations of mean and variance of total travel time.The diagonalization algorithm is given to solve this programming.Results show that insensitive passengers have large effects on the path choice than sensitive ones,especially for the larger demand.  相似文献   

9.
Rock,concrete and other geo-materials,due to the presence of microstructural inhomogeneity,their fracture processes and damage characteristics are associated with the distribution of micro-cracks contained in the materials.In this study,by introducing a cohesive zone model based on fracture mechanics into the framework of deformable discrete element method,a continuous-discontinuous coupling analysis approach for simulating the fracture of quasi-brittle materials is proposed.The cohesive interface elements are inserted into certain engineering or research region.It is assumed that damage and fracture occur only in the interface elements,while bulk material is modeled to be elastic.The Mohr-Coulomb criterion with tension cut-off is adopted as the damage initiation criterion,and a scalar damage variable representing damage in the material is used to describe the rate at which the material stiffness is degraded.Cracks are simulated explicitly by the failure of the interface elements.Numerical simulations are performed in order to validate the suggested method.Partial applications are also listed.The results show that this method provides a simple but effective tool for the simulation of crack initiation and propagation,and it can reflect the whole process of quasi-brittle materials from small deformation to large deformation and failure.  相似文献   

10.
Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi’s and ЪерезанцевВГ’s methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi’s method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.  相似文献   

11.
The maximum work principle of Bishop-Hill was developed to analyze the axisymmetric co-deformation in face-centered cubic crystals (f.c.c.) for twinning on {111} 112 and slip on {111} 110 systems. The influence of ξ , the ratio of critical re- solved shear stress for twinning to slip, on the yield stress states and corresponding active slip or/and twinning systems for orientations in the standard stereographic triangle of cubic crystal was investigated systematically. The Taylor factors and the anisotropy of yield strength for three important orientations [100], [110] and [111] in orientation space were analyzed. It is found that the yield strength asymmetry for the case of axisymmetric de- formation of tension and compression can be explained based on the microscopic theory of crystal plasticity. The concept of orientation factor for twinning ability was proposed and the deformation mechanism map in the orientation space was established for the case of axisymmetric deformation. The deformation texture formation and development of f.c.c. crystals with low stacking fault energy for axisymmetric tension can be explained qualita- tively on the basis of analyzed results.  相似文献   

12.
Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance the tunnel construction and groundwater.To assess the related problems, an limiting drainage standard ranging from 0.5 to 2.0 m3/(m·d) was suggested for mountain tunnels based on survey and comparative analysis. After that, for the purpose of verifying the rationality of the standard, a calculated formula for dewatering funnel volume caused by drainage was deduced on the basis of the groundwater dynamics and experience method.Furthermore, the equation about the relationship between water discharge and drawdown of groundwater table was presented. The permeability coefficient, specific yield and groundwater table value were introduced, and then combined with the above equation, the drawdown of groundwater table under the proposed limiting drainage criterion was calculated. It is shown that the proposed drainage standard can reach the purpose of protecting ecological environment under the following two conditions. One is the permeability coefficient ranges from 10-4 to 10-5 m/s and the specific yield ranges from 0.1 to 0.001. The other is the permeability coefficient varies from 10-6 to 10-8 m/s and the specific yield varies from 0.1 to 0.01. In addition, a majority of common geotechnical layers are involved in the above ranges. Thus, the proposed limiting drainage standard which ranges from 0.5 to 2.0 m3/(m·d) for mountain tunnel is reasonable.  相似文献   

13.
Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.  相似文献   

14.
In order to improve the robot’s abilities of bearing heavy burdens and transporting in complex terrains,the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is studied in this paper. The kinematics and dynamics of the robot are analyzed and the two-dimensional linear inverted pendulum model is adopted in planning the trajectories of joints. Then the mathematical model of valve-controlled asymmetric cylinder and control model of single leg are proposed respectively. In the end,NSGA-II algorithm is used to achieve the multi-objective optimization design of parameters concerning single leg mechanism and PD torque control. The results prove that the optimized leg mechanism can significantly reduce the required maximum power of hydraulic system,thus decrease its own weight and lead to the obtaining of good dynamic performance.  相似文献   

15.
The mechanical behavior and failure criterion of high performance concrete(HPC)subjected to biaxial tension-compression loading conditions were investigated experimentally with a real triaxial testing system.The failure modes,ultimate strength and stress-strain curves of HPC under biaxial tension-compression loading conditions were obtained.Then,mechanical behavior of HPC under different stress ratios were analyzed.Finally,based on the Kupfers strength criterion for conventional concrete and test results,a novel failure criterion was proposed for HPC under biaxial tension-compression loading conditions.  相似文献   

16.
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz’s model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.  相似文献   

17.
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that: (1) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges; (3) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness.  相似文献   

18.
Effects of Forming Pressure on the Porosity of Polyimide Porous Materials   总被引:1,自引:1,他引:0  
Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity, experience model of polyimide porous materials was proposed which is similar to the traditional expe- rience model of the metal porous material. While being pressed, polyimide was found soon to come into elasto- plastic deformation progress in this paper, so the theory model of metal porous material based on Hooker's law was not fit for the polymer any more. A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.  相似文献   

19.
Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics(PFC-CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC-CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.  相似文献   

20.
Shear band (SB), axial, lateral and volumetric strains as well as Poisson's ratio of anisotropic jointed rock specimen (JRS) were modeled by Fast Lagrangian Analysis of Continua (FLAC). Failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. Several FISH functions were written to automatically find the addresses of elements in the joint and to calculate the entire deformational characteristics of plane strain JRS. The results show that for moderate joint inclination (JI) , strain is only concentrated into the joint governing the behavior of JRS, leading to ideal plastic responses in axial and lateral directions. For higher JI, the post-peak stress-axial and lateral strain curves become steeper as JI increases owing to the increase of new SB's length. Lateral expansion and precursor to the unstable failure are the most apparent, resulting in the highest Poisson's ratio and even negative volumetric strain. For lower JI, the entire post-peak deformational characteristics are independent of JI. The lowest lateral expansion occurs, leading to the lowest Poisson's ratio and positive volumetric strain all along. The present prediction on anisotropic strength in plane strain compression qualitatively agrees with the results in triaxial tests of rocks. The JI calculated by Jaeger's formula overestimates that related to the minimum strength. Advantages of the present numerical model over the Jaeger's model are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号