首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3·xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2 particles forming a porous network structure in the oxide electrode. Polyethylene glycol was added as a controller to partly inhibit the sol-gel reaction. The rate capacitance of 530 F·g-1 was measured for the powder formed at an optimal annealing temperature of 210°C. Several details concern...  相似文献   

2.
以RuCl3.nH2O为原料通过溶胶-水热法制得纳米RuO2粒子,然后在RuO2溶胶体系中通过常规的化学氧化法由苯胺氧化聚合制备纳米RuO2/聚苯胺复合材料,采用扫描电镜(SEM)和X-射线衍射(XRD)对其形貌和微观结构进行表征,并用循环伏安法研究了不同RuO2质量分数的复合材料电极的电化学性能。结果表明,RuO2质量分数为5%时,RuO2/聚苯胺复合材料形成致密的表面包覆型结构,聚苯胺电化学电容消失,复合材料电极电容很小。RuO2质量分数大于或小于5%时,RuO2粒子呈弥散状分布在聚苯胺中;RuO2质量分数为3%时,复合材料比电容达到极值374.6 F/g,这种复合材料具有很好的电化学特性,适于用作超级电容器电极。  相似文献   

3.
A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12 F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)E/Carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.  相似文献   

4.
采用活性炭作为电极活性物质,以碳纳米管为导电剂,用聚四氟乙烯隔膜制备水系和有机系扣式超级电容器,考察并分析二者在容量特性、自放电性能、循环性能、功率密度、能量密度等方面的优劣。结果表明,实验制得的电容器样品表现出良好的电容行为和循环性能;水系电容器样品10h自放电率为28.7%,1h漏电流为0.32mA;有机系电容器样品在电流密度为1.04A/g时,能量密度为10.32Wh/kg,功率密度达到1.88kW/kg。  相似文献   

5.
球磨对多壁纳米碳管束电化学容量的影响   总被引:1,自引:0,他引:1  
为了提高纳米碳管电极在电化学双电层电容器(EDLC)中的电化学性能,研究了球磨处理对高纯度多壁纳米碳管(MWNT)束电极电化学容量的影响.将球磨处理前后的两种MWNTs分别制作成电极,并组装成模拟EDLC,利用循环伏安法和恒流充放电法,测试MWNT电极的电化学可逆容量.研究结果表明,MWNT粗产品的纯度达到了97%以上.经过3 h的球磨处理后,大多数MWNTs束被打散或打断,其比表面积由球磨前的238 m2/g提高到了340 m2/g. 用MWNTs制备的EDLC电化学容量由球磨前的36 F/g提高到了72 F/g.与球磨前的MWNTs束相比,球磨后的样品更适合作为EDLC电极材料.  相似文献   

6.
Electric double layer capacitors (EDLCs) have been widely used because they have large capacitance, and are free of maintenance and free from toxic materials. After NEC corporation developed activated carbon/carbon super capacitor, they are expected to be applied to electric vehicles[1]. A unit of EDLCs is based on the double layer capacitance at solid/solution interface of high surface material. As in the case with a traditional electrolytic capacitor, the electrical energy is stored thro…  相似文献   

7.
以聚苯胺水凝胶衍生碳为载体,通过在载体材料上原位生长二氧化锰,制备了聚苯胺水凝胶衍生碳/二氧化锰复合材料。通过X射线衍射、拉曼光谱、扫描电子显微镜及X射线光电子能谱仪对产物的化学结构、微观形貌和锰元素的价态进行了表征,并利用电化学技术对产物的超级电容性能进行了研究。研究结果表明,其具有较高的比电容(170 F·g-1)、良好的电化学响应及倍率特性、较低的阻抗,以及较好的循环稳定性(循环1 000次,比电容保持率为94.7%)。本文开发的聚苯胺水凝胶衍生碳/二氧化锰复合材料具有制备方法简单和纳米结构理想等优点,在高性能超级电容器电极材料领域具有良好应用前景。  相似文献   

8.
In this paper, Co9S8/Ni3S2 nanoflakes (NFs) with sulfur deficiencies were grown in-situ on N-doped graphene nanotubes (N-GNTs). They were successfully prepared through electrodeposition followed by hydrogenation treatment, which is able to act as a self-supported electrode for asymmetric supercapacitors (ASCs). Combining the defect-rich active materials with highly conductive skeletons, the hybrid electrode N-GNTs@sd-Co9S8/Ni3S2 NFs show ultrahigh specific capacity of ∼304 mA h g−1 and prominent rate capability (capacity retention ratio of ∼85% even at 100 A g−1), and deliver a long cycling lifespan of ~1.9% capacitance loss after 10000 cycles. In addition, an ASC was constructed using the as-synthesized composite electrode as the positive electrode and active carbon (AC) as the negative electrode. The fabricated device shows a high energy density of ~45.1 Wh kg−1 at ~3.4 kW kg−1 and superior cycling stability. This work substantiates a smart strategy to fabricate novel composite electrode materials for next-generation supercapacitors by incorporating riched deficiencies into nanostructures.  相似文献   

9.
NiO/AC非对称超级电容器的研究   总被引:2,自引:1,他引:2  
通过热处理球形Ni(OH)2得到NiO粉末,将其作为正极与活性炭(AC)负极组装成非对称超级电容器,用恒流充放电测试分析了超级电容器的电容特性。讨论了正负极活性物质比例、充放电电流和热处理时间对超级电容器比电容量、内阻的影响。结果表明:正负极活性物质比为1:3,工作电流密度为200mA/g,当Ni(OH)2的热处理时间为2h,充电电压为1.3V时,超级电容器的双电极比电容量可达71.5F/g。  相似文献   

10.
11.
为提高碳基电化学电容器的比电容和和能量密度,采用化学沉积法将少量镍氧化物沉积在活性炭上,得到沉积镍氧化物的活性炭材料并以此材料做成复合电极用于混合型电化学电容器的正极.研究显示,沉积镍氧化物后,碳材料的比表面积略有减小,但孔径分布没有明显变化.复合电极作为混合型电容器的正极时,比电容达到194.01F/g,比纯活性炭正极的175F/g提高了10.84%;复合电极在6mol/L的电解液中析氧电势为0.296V,比纯活性炭电极的0.220V高出0.076V,因此,具有较高的能量密度.不同放电电流密度下的恒电流测试结果显示,沉积镍氧化物活性炭复合电极的比电容值没有明显变化,与纯活性炭电极一样表现出良好的功率特性.采用沉积镍氧化物活性炭作为正极材料的复合型电容器,在6mol/L的KOH水溶液作为电解液时,单体电容器的工作电压可以达到1.2V,高于纯活性炭制备的双层型电容器0.2V.充放电循环10000次时,复合型电容器的电容仅降低到初始电容的90%.上述结果表明,在活性炭上沉积少量镍氧化物颗粒可以提高碳基电化学电容器的比电容和能量密度.  相似文献   

12.
ZIF-derived carbon structures are considered as desired electrode materials for supercapacitors due to their high surface area,high conductivity, and porous structure. However, the most reported ratio of 2-methylimidazole and Zn(II) is 4:1 to 20:1, which limits commercial applications due to the increasing cost. In this paper, a multirole Zn(II)-assisted method is presented from Zn(II) solution, Zn O, Zn O/ZIF-8 core-shell nanostructure, to 3 D hierarchical micro-meso-macroporous carbon structures with a1:1 ratio of 2-methylimidazole and Zn(II). The hierarchically porous carbon has a high surface area of 1800 m2 g~(-1) due to the synergistic effect of multirole Zn(II). The unique carbon-based half-cell delivers the specific capacitances of 377 and 221 F g~(-1) at the current densities of 1.0 and 50 A g~(-1), respectively. As a 2.5 V symmetrical supercapacitor, the device reveals a high doublelayer capacitance of 24.4 F g~(-1), a power density of 62.5 k W kg~(-1), and more than 85.8% capacitance can be retained over 10000 cycles at 10 A g~(-1). More importantly, the low-cost hierarchically porous carbon could be easily produced on a large scale and almost all chemicals can be reused in the sustainable method.  相似文献   

13.
成功制备了金属有机框架M3(BTC)2·12H2O(M=Ni和Co),并将其应用于超级电容器电极材料中,通过X线衍射(XRD)表征发现,这些化合物具有同类型的结构,在6 mol/L电解液中,采用循环伏安法和1 000次充放电循环测试其电化学性能.实验表明:Ni3 (BTC)2·12H2O电极材料在扫描速率5 mV/s下,比电容达到了430 F/g;在高扫描速率200 mV/s下,比电容为154 F/g;在扫描速率5 mV/s下1 000次充放电测试其循环寿命后发现,比电容保持率为86%.  相似文献   

14.
Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge- discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors.  相似文献   

15.
为了拓展石墨烯凝胶在超级电容器方面的应用,采用氨水与水合肼作为掺杂剂和还原剂,通过与氧化石墨烯的水热反应制备了氮掺杂石墨烯凝胶,并进一步运用原位聚合的方法在氮掺杂石墨烯凝胶上负载聚苯胺,得到氮掺杂石墨烯/聚苯胺复合凝胶. 利用X射线衍射、扫描电子显微镜对产物的结构和微观形貌进行表征,采用循环伏安、恒电流充放电等方法测试其电化学性能. 结果表明,氮掺杂石墨烯/聚苯胺复合凝胶与纯氮掺杂石墨烯凝胶相比,电化学性能有显著的提高. 当扫描速率为10 mV/s时,复合凝胶的比电容约为500 F/g;在恒电流充放电实验中,当电流密度增加到10 A/g时,复合凝胶的比电容仍然保持在约400 F/g. 当循环伏安扫描1 000圈后,比电容的保持率达到80%. 这些表明氮掺杂石墨烯/聚苯胺复合凝胶拥有突出的电化学性能,也表明了氮掺杂石墨烯/聚苯胺在超级电容器方面将会有很好的应用前景.  相似文献   

16.
Three-dimensional hierarchical Co_3O_4 microstructures decorated with Ag and Cu oxides were prepared via displacement reaction and subsequent annealing treatment.Photocatalytic properties measurements revealed that the photocatalystic activities of Cu O/Co_3O_4 composites(Co_3O_4 microstructures decorated with Cu O)were enhanced while those of Ag_2O/Co_3O_4 composites(Co_3O_4 microstructures decorated with Ag_2O)were reduced,when compared with those of pure hierarchical Co_3O_4 microstructures toward the degradation of methyl orange.In addition,Cu O/Co_3O_4 composites exhibited an excellent recyclability ability of photodegradation.The electrochemical properties test indicated that both of the composite oxide electrodes exhibited excellent pseudocapacitive performance with relatively high specific capacitance and good long-term cycling stability.With the increase of the loaded Ag_2O and Cu O dosages deposited on the Co_3O_4 microstructures surface,the specific capacitance values of the composites were increased.Ag_2O/Co_3O_4 composite electrodes showed higher specific capacitance values and better cycling stability than Cu O/Co_3O_4 composite ones.  相似文献   

17.
Mn/Ni composite oxides as active electrode materials for supercapacitors were prepared by solid-state reaction through the reduction of KMnO4 with manganese acetate and nickel acetate at low temperature. The products were characterized by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The electrochemical characterizations were performed by cyclic voltammetry (CV) and constant current charge-discharge in a three-electrode system. The effects of different potential windows, scan rates, and cycle numbers on the capacitance behavior of Mn0.8Ni0.2Ox composite oxide were also investigated. The results show that the composite oxides are of nano-size and amorphous structure. With increasing the molar ratio of Ni, the specific capacitance goes through a maximum at molar fraction of Ni of 20%. The specific capacitance of Mn0.8Ni0.2Ox composite oxide is 194.5 F/g at constant current discharge of 5 mA.  相似文献   

18.
超级电容器具有大充放电速率、良好的循环稳定性及高功率密度等优点, 是一种新兴的绿色环保储能器件。采用简单的水热合成法制备镍铝层状双金属氢氧化物(NiAl-LDHs) 超级电容器电极材料, 探究不同镍铝比对其形貌组成及电化学性能的影响。所制备的Ni1Al1-LDHs 电极材料在电流密度为1 A/g 时表现出378 F/g 的高比电容。以活性炭(AC) 为负极组成的Ni1Al1-LDHs//AC 非对称超级电容器在能量密度为27.5 Wh/kg 时, 具有1.4 kW/kg 的高功率密度, 表现出优异的电化学性能。  相似文献   

19.
The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind of rare earth and transitional metal colloidal supercapacitors, which can deliver higher specific capacitance than electrical double-layer capacitors(EDLC) and traditional pseudocapacitors. The electrode materials in colloidal supercapacitors are in-situ formed electroactive colloids, which were transformed from commercial rare earth and transitional metal salts in alkaline electrolyte by chemical and electrochemical assisted coprecipitation. In these colloidal supercapacitors, multiple-electron Faradaic redox reactions can be utilized, which can deliver ultrahigh specific capacitance often larger than one-electron capacitance. Multiple-valence metal cations used in our designed colloidal supercapacitors mainly include Ce3+, Yb3+, Er3+, Fe3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+ and Sn4+. The colloidal supercapacitors can be served as the promising next-generation high performance supercapacitors.  相似文献   

20.
Both energy density and power density are crucial for a supercapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced from the electrode and the electrolyte of supercapacitors to simultaneously achieve high energy density and power density. On the one hand, layered transition metal hydroxides(Ni(OH)2 and Co(OH)2) are introduced as electrodes, followed with exploration of the effect of the active materials and the substrate on the electrochemical behavior. On the other hand, various redox electrolytes are utilized to improve the specific capacitance of an electrolyte. The roadmap is to select an appropriate electrode and a dedicated electrolyte in order to achieve high electrochemical performance of the supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号