首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 312 毫秒
1.
采用密度泛函方法研究了一系列(C^N)2Ir(idpt) [C^N=2-苯基吡啶(1), 2-(5-氟苯基)吡啶(2), 2-(4,5,6-三氟苯基)吡啶(3), idpt=亚氨基二磷酸盐]配合物的几何结构和光谱特征。使用B3LYP/LanL2DZ泛函得到配合物1-3的基态几何结构,同时使用相关的UB3LYP/LanL2DZ泛函优化了其激发态结构。计算得到的Ir-N(1)、Ir-C(1)和Ir-O(1)基态键长和相应实验值符合得较好。在TD-DFT和CPCM计算水平下,得到1-3的最低能吸收和发射分别出现在447(1)、452(2)、424(3) nm和541(1)、499(2)、466(3) nm。这些激发的起始轨道HOMOs,主要由金属和两个双齿配体占据,而终止轨道LUMOs均为占据在两个双齿配体上的π*型轨道,该跃迁被指认为金属到配体和配体到配体的电荷转移(MLCT/LLCT)跃迁。计算结果显示出,该类配合物的发光颜色受苯基吡啶配体自身和F取代基的双重影响。  相似文献   

2.
从理论上研究了一系列[Ir(ppy)2(py-H)]+ (1),[Ir(ppy)2(py-pr]+ (2),[Ir(ppy)2(py-pz)]+(3) [ppy=苯基吡啶,py=双(吡唑-1-基)甲烷,pr=吡咯,pz=吡唑]配合物的几何构型和光谱特征。采用密度泛函和单激发组态相互作用方法优化了基态和激发态结构,用含时密度泛函结合溶剂化模型计算三个分子在CH2Cl2溶剂中的光谱特征。基态优化得到Ir-N1、Ir-N4和Ir-N6与相应的实验值符合良好,激发态几何构型相对于基态变化较小,这与斯托克斯频移现象相符。配合物1-3的最低能吸收分别在399.07 nm、401.68 nm和396.15 nm,其磷光发射分别在513.00 nm、513.78 nm和510.38 nm,其最高占据轨道(HOMO)主要由金属Ir和配体ppy占据,而分子1和2最低空轨道(LUMO)均为ppy配体占据的π*型轨道,其跃迁属性为金属到配体和配体内部的电荷转移(MLCT/ILCT)跃迁,分子3的LUMO是由ppy和py配体占据的π*型轨道,其跃迁属性仅为金属到配体(py)的跃迁(MLCT)。研究结果表明,在非共轭配体py上引入取代基团不会对配合物发光颜色产生重要影响。  相似文献   

3.
采用密度泛函(B3LYP)和开壳层密度泛函(UB3LYP)方法分别优化了[(DMSO)2(CN)2Os(N^N)][N^N=bpy(1);N^N=phbpy(2);bpy=2,2'-吡啶;phbpy=4,4'-二苯基-2,2'-吡啶]配合物的基态和激发态结构.利用TD-DFT方法结合PCM溶剂化模型计算了它们在CH2Cl2溶液中的吸收和发射光谱.研究结果表明:优化得到的几何结构参数和相应的实验值符合得非常好,激发态几何相对基态变化较小,这与实验上观察到的较小的斯托克斯频移现象一致.两个配合物的最低能单态吸收分别在441(1)和453(2)nm,其磷光发射分别在631(1)和627(2)nm.1和2的高能占据分子轨道主要由金属和CN基配体占据,而低能非占据分子轨道主要受N^N配体成份控制,因此1和2的最低能吸收和发射被指认为MLCT跃迁,并混有少量的LLCT微扰.它们的高能吸收均表现为ππ*跃迁特征,但是它们属于两种不同类型的ππ*激发态.  相似文献   

4.
采用HF/DFT的混合泛函PBE0和UPBE0优化了配合物[Os(DMSO)2(CN)2(N^N)](其中N^N=2,2'-吡啶)的基态和激发态结构.在基态和激发态结构的基础上,利用含时密度泛函理论(TD-DFT)方法,结合极化连续介质(PCM)模型分别计算了它在gas(1)、CH2Cl2(2)、CH3OH(3)和H2O(4)溶液中的吸收和发射光谱.研究结果表明:优化得到的几何结构参数和相应的实验值符合得非常好.在极性较大的溶剂中Os-S1、Os-C1键较长,Os-N3键较短,表明溶剂的极性会影响配合物的电子云分布.配合物在1-4溶剂中的最低能吸收和发射均来自分子轨道93→95的激发,该激发被指认为[d(Os)+π(CN)+π(N^N)→π*(N^N)]的跃迁具有混合的金属到配体和配体到配体的电荷转移跃迁(MLCT/LLCT)特征.配合物在1-4溶剂中的最低能吸收和发射分别在519、501、494、485和654、631、622、610 nm,表明随着溶剂极性的逐渐增大(1234),最低能吸收和发射发生明显的蓝移.这显示出通过改变溶剂极性可以调节配合物的发光颜色.  相似文献   

5.
从理论上研究了一系列[Ir(ppy)2(ppz)]+ (1),[Ir(ppy)2(ph-ppz)]+ (2),[Ir(ppy)2(ph-ppz)]+(3)(3与2的区别在于苯环的连接位置不同)[ppy=苯基吡啶,ppz =2-吡啶基吡唑,ph=苯基]配合物的几何构型和光谱特征。采用B3LYP泛函和单激发组态相互作用(CIS)方法计算了基态(S0)和最低能三重激发态(T1)结构,用含时密度泛函方法结合PCM溶剂模型计算三个分子在二氯甲烷溶剂中的吸收和发射光谱。研究结果表明,Ir-N3和Ir-N4优化结构数据与相应的实验值近似相同。配合物1-3的最低能吸收在447.91 nm、456.52 nm和516.90 nm,磷光发射在512.02 nm、501.14 nm和562.29 nm。它们的最高占据轨道(HOMO)主要由金属Ir和配体ppy占据,而最低空轨道(LUMO)均为占据在ppz配体上的π*型轨道,因此该跃迁属于金属到ppz配体和ppy配体到ppz配体的(MLCT/LLCT)电荷转移跃迁。并且,此类配合物的吸收和发射受ppy和ppz配体影响较大。  相似文献   

6.
采用密度泛函方法研究了四个卟啉铂配合物[PtR][R=顺二苯并卟啉(DBPs,1),5,15-二苯基-顺二苯并卟啉(PDBPs,2),顺二萘并卟啉(DNPs,3),5,15-二苯基-顺二萘并卟啉(PDNPs,4)]的几何结构、电子结构和光谱特性。首先使用密度泛函方法中的三种(B3LYP、M062X和B3PW91)不同功能泛函优化了四个分子的基态(S0)几何结构,选定UB3LYP泛函优化四个分子的激发态(T1)结构。并将计算结果与相关实验数据进行比较,以评价其性能。计算得到的基态Ir-N键长和吸收值与相应的实验结果吻合较好。在 TD-DFT和PCM计算水平下,得到1-4的最低能吸收和发射分别在 498、507、537、545 nm和684、683、761、823 nm。其最高占据分子轨道主要占据在卟啉配体上,而最低空轨道也是π*(R) 型轨道。因此,1-4的该跃迁被指认为[π(R)→π*(R)]电荷转移跃迁。计算结果显示出,该类配合物的发光颜色主要受卟啉配体本身的π-扩展能力控制,而受5,15位置的取代基影响较小。  相似文献   

7.
采用DFT和TD-DFT方法对一系列锇配合物[Os(N^N)(CO)2I2]的基态和激发态几何结构、电子结构、吸收光谱和发射光谱进行了系统的理论研究.计算结果显示出,变换配合物1-3的N^N配体,只是些微的影响了基态和激发态的几何结构,但是导致了较大的电子结构的差异.配合物1-3的最高占据分子轨道(HOMO)主要由Os原子和CO配体共同占据,而三个配合物的最低空轨道(LUMO)都占据在N^N配体上.因此三个配合物的最低能吸收(488(1),474(2)和559 nm(3))被指认为MLCT/LLCT混合电荷转移跃迁.并且,1-3的最低能发射分别位于585、557和611 nm,具有3[π*(N^N)→d(Os)]和3ππ*(3MLCT/3LLCT)的混合跃迁特征,这和最低能吸收的跃迁特性相一致.  相似文献   

8.
采用PBE0和UPBE0方法分别优化了一系列Ir(Ⅲ)[(Cz-py-CH3)2Ir(acac)](1)、[(Cz-py-H)2Ir(acac)](2)、[(Cz-py-CF3)2Ir(acac)](3)和[(Cz-iq)2Ir(acac)](4)[Cz=咔唑基,py=吡啶基,iq=异喹啉基,acac=乙酰丙酮]配合物的基态和激发态几何结构.利用含时密度泛函(TD-DFT)方法,结合CPCM溶剂化模型计算了它们在CH2Cl2溶液中的吸收和发射光谱.计算结果显示:Ir-N、Ir-C、Ir-O基态键长与相应实验值符合得较好.配合物1~4的HOMO轨道主要由金属的d轨道和Cz-py(iq)配体的π轨道构成,而它们的LUMO轨道主要由Cz-py(iq)配体的π*轨道占据,边界分子轨道能量受Cz-py(iq)配体影响较大.配合物1~4的最低能吸收和发射分别在435、444、492、532 nm和509、518、598、635 nm,这些跃迁均由HOMO→LUMO的激发产生,被指认为具有金属到配体(MLCT)和发生在配体内部(ILCT)的混合跃迁性质,它们的高能吸收也具有相似的跃迁特征.发射波长的巨大差异显示出:此类配合物的发光颜色可以通过Cz-py(iq)配体的π电子捐赠能力来调节.  相似文献   

9.
苯并噻吩铱配合物通常发红光,且具有较强的电致发光性能,因此被广泛的应用于光电显示领域。以2-(苯并噻吩-2-基)喹啉为基础配体,从理论上研究了三个同分异构体铱[(btq)2Ir(pic)][btq=2-(苯并噻吩-2-基)喹啉(1);3-(苯并噻吩-2-基)异喹啉(2);1-(苯并噻吩-2-基)异喹啉(3);pic=吡啶甲酸酯]配合物的电子结构和光谱特征。采用B3LYP和CIS方法优化了它们的S0和T1态几何结构,利用TD-DFT方法,结合CPCM溶剂模型模拟了它们在CH2Cl2溶剂中的吸收和发射光谱。研究结果表明:计算得到的分子结构参数与相对应的实验值吻合的较好。三个配合物的最低能吸收和发射分别在488 (1)、455 (2)、485 (3)和679 (1)、642 (2)、683 nm (3)。其最高占据分子轨道由金属的d轨道和btq配体的π成键轨道占据, 而最低空轨道为占据在btq配体上的π反键轨道。因此,最低能吸收和发射均被指认为金属到btq配体(MLCT)和btq配体内部(ILCT)的电荷转移跃迁。苯环连接位置的改变并未对配合物主体结构产生重大影响,但空间位阻和共轭效应的双重作用足以改变其发光颜色。  相似文献   

10.
在相对论有效原子实势(RECP)近似下,用Gaussian98程序和密度泛函方法 (B3LYP/LANL2DZ)对PdnPt(n=1-4)小团簇的各种几何构型进行全优化计算,得到它们的基态结构.结果表明,PdPt的基电子态是3Σ+u, Pd2Pt的基态结构为具有C2V构形的等腰三角形,其对应的电子态为3B2.Pd3Pt的基态结构为具有Cs对称性的三棱锥结构,其电子态为3A".Pd4Pt的基态结构为具有C4V对称性的四棱锥结构,基电子态为 3B1.最后本文还计算了团簇最高占据轨道(HOMO)与最底空轨道(LUMO)之间的能级间隙(HLG),讨论了基态结构的垂直电离势(IP)和电子亲和能(EA).  相似文献   

11.
从理论上研究了一系列[Os(CO)3(tfa)(O^N)](tfa=三氟乙酸;O^N=5-氟-羟基喹啉(1),羟基喹啉(2)和2:甲基-羟基喹啉(3))配合物的结构和光谱特征.分别采用B3LYP/LANL2DZ和CIS/LANL2DZ方法优化了它们的基态和激发态结构.计算得到的Os-C、Os-N和Os-O基态键长和相应...  相似文献   

12.
应用B3LYP,B3P86方法以及6-311g,6-311g(d,p),6-311++g(df),6-311++g(3df),aug-cc-pvdz,aug-cc-pvtz,D95(d)多种基组,对BS分子,BS+及BS-离子基态进行几何优化和单点能扫描计算.用最小二乘法,拟合得到BSX(X=-1,0,+1)分子(离子)基态的Murrell-Sorbie势能函数.由于BS分子计算结果与实验值符合得很好,首次给出了BSX(X=-1,0,+1)分子(离子)的势能函数,为BSX(X=-1,0,+1)分子(离子)的反应动力学提供了理论依据.  相似文献   

13.
在相对论有效原子实势(RECP)近似下,用Gaussian98程序和密度泛函方法(B3LYP/LANL2DZ)对PdnPt(n=1-4)小团簇的各种几何构型进行全优化计算,得到它们的基态结构。结果表明,PdPt的基电子态是3Σu+,Pd2Pt的基态结构为具有C2V构形的等腰三角形,其对应的电子态为3B2。Pd3Pt的基态结构为具有Cs对称性的三棱锥结构,其电子态为3A"。Pd4Pt的基态结构为具有C4V对称性的四棱锥结构,基电子态为3B1。最后本文还计算了团簇最高占据轨道(HOMO)与最底空轨道(LUMO)之间的能级间隙(HLG),讨论了基态结构的垂直电离势(IP)和电子亲和能(EA)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号