首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Blades are one of the vital components and most difficulty in manufacturing of large hydro turbines.In order to cost-effectively and productively manufacture these kinds of blades,a series of digital techniques in manufacturing have been devel- oped,which includes digital design of hydro turbine blades based on manufacture' requirements,Computer-aided location and the machined error evaluation by using 3-dimensional digitized measuring,tool path generation strategy to meet requirements of en- hancing machining efficiency and controlling deviation in NC machining,tool path generation and NC machining simulation by es- tablishing a virtual NC machining environment for blades,and reasonable and feasible strategy and the systematic scheme for man- ufacturing of large blades by using 5-axis simultaneous CNC machining.The developed digital manufacture techniques have been successfully applied in manufacturing of both the large Kaplan and Francis hydraulic turbine blades;it shows that higher efficiency and the better surfaces finish accuracy can be achieved.  相似文献   

2.
In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are analyzed directly from the real tooth surfaces.The topography data of the part are off-line measured in the post-process.A comparison is made between two models:CAD model of DGTS and virtual model of the physical measured surface.And a matching rule is given to determine these two surfaces in an appropriate fashion.The developed error estimation model creates a point-to-point map of the real surface to the theoretical surface in the normal direction.A“pre-calibration error compensation”strategy is presented.Through processing the results of the first trail cutting,the total compensation error is predicted and an imaginary digital tooth surface is reconstructed. The machining errors in the final manufactured surfaces are minimized by generating this imaginary surface.An example of ma- chining 2-D DGTS verifies the developed method.The research is of important theoretical and practical value to manufacture the DGTS and other digital conjugate surfaces.  相似文献   

3.
Digital Design and Manufacture of Spatial Cams   总被引:3,自引:0,他引:3  
1 Introduction Since spatial cam mechanisms have excellent kinematic and dynamic characteristics ,they are widely usedinmany types of automatic machines such as automatic assembly machinery, machine tools ,printing presses ,in-ternal combustionengines andtextile machines[1].The excellent dynamic and dynamic characteristics of the spa-tial cam mechanisms are ensured by the precise contour surfaces ,therefore the elements of spatial cam mecha-nisms must have higher machining accuracy.As a practi…  相似文献   

4.
Chip-ejection interference in cutting processes of modern cutting tools   总被引:1,自引:0,他引:1  
Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modem cutting tools are explored. A "synthesis method of elementary cutting tools" is suggested for modeling the cutting process of modem complex cutting tools. The general equation governing the chip-ejection motion is deduced. Real examples of non-free cutting are analyzed and the theoretically predicted results are supported by the experimental data or facts. The sufficient and necessary conditions for eliminating chip-ejection interference and for realizing free cutting are given; the idea and the technical approach of "the principle of free cutting" are also discussed, and a feasible way for improving or optimizing the cutting performance of modem cutting tools is, therefore, found.  相似文献   

5.
Relatively to non-traditional and high-energy-beam micro-manufacturing technique, the micro-cutting technology has many merits. For instance, the machining range is bigger, the cost of equipments is much lower, and the productivity and machining accuracy are higher. Therefore, the micro-cutting technology will take an important effect on the machining technique of complex shape microparts. In this paper, based on selfly-developed machine tool, the precision cutting technology of complex shape microparts made of metal material was studied by analyzing the modeling method on complex shape, the means of toolpaths layout and the optimal selection for cutting parameters. On the basis of above work, a typical duralumin specimen of high precision, low surface roughness and complex shape micropart was manufactured. This result will provide favorable technical support for farther research on the micro-cutting technology.  相似文献   

6.
A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mechanism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high adhesion efficiency, light body in weight, small size in structure and good capability in payload, is tested in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption performance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstanding locomotion ability and payload capacity.  相似文献   

7.
Machine tool has been widely used in the production of the military and civilian.The machining precision of the workpiece is the direct reflection for the machining performance of machine tool.With the improvement for requirement of the machining precision,improving the accuracy of machining is becoming important.Guideway and spindle are the key motion components that decided the shape,the relative position and the surface roughness of the workpiece.In order to adapt to the requirements of the workpiece machining,this paper analyzes the errors of guideway and spindle that affect the accuracy of the processing,establishes the motion relations for every errors of guideway in machining process,identifies the regular for the straightness,bending of the guideway and rotating error of spindle that influences the workpiece surface.Finally,according to the correlation analysis of the measured and the simulation results,the motion error of machine tool is identified,which lays the foundation for improving the accuracy of machine tool in next step.  相似文献   

8.
The effects of directional riblets surfaces on the turbulent/non-turbulent(T/NT) interface in turbulent boundary layers are experimentally investigated using two-dimensional time-resolved particle image velocimetry(PIV). The velocity field of streamwise—wall-normal plane for the smooth surface, converging and diverging riblets surfaces are measured. The interface is detected using the criterion of local kinetic energy. The statistical properties of interface height and conditional averaged velocity for different surfaces are analyzed. It is shown that, the converging and diverging riblets surfaces have little effect on the fractal dimension of the T/NT interface, but they cause the intermittency profile deviate from error function and the probability distribution of interface height deviate from Gaussian function. To be specific, the distribution of interface height for the converging riblets surface shows a positive skewness while it shows a negative skewness for the diverging riblets surface.Moreover, the conditional averaged streamwise velocity and spanwise vorticity across the interface are analyzed, and it is found that their self-similarities are preserved for different surfaces when normalized with respective friction velocity. The correlation analysis reveals that near-wall streamwise velocity fluctuation and interface height show a negative correlation.  相似文献   

9.
Wire rolling is a typical large deformation process and its principle is very complex,which includes material non- linearity,geometry non-linearity and boundary non-linearity.It is difficult to obtain theory analytical results by trying to roll or physical experiment because they will induce many problems such as high cost,waste time and venture.With the rapid advance- ment of computing technology and numerical method,the finite element method is regarded as the best one,which can account for the large plastic deformation,thermo-mechanical coupling and complex boundary conditions of the rollers and the workpiece inter- actions in the rolling process.Under the different initial rolling temperature,the two-pass hot continuous rolling process of high- speed wire has been simulated accurately for the pre-finishing rolling section.The metal fluxion law and the deformation field have been obtained.Strain,temperature,rolling force and torque also have been simulated and discussed.The results of simulation are useful for practical manufacture and the optimization of process-parameters.  相似文献   

10.
In this paper, a micro water dissolution machining(MWDM) principle is proposed for machining potassium dihydrogen phosphate(KDP) crystal using water-in-oil micro-emulsion as an abrasive-free polishing fluid. In addition, two instances of the application of this principle to ultra-precision machining of KDP crystals are presented. Computer-controlled optical surfacing(CCOS) and diamond wire cutting(DWC) process were carried out according to the MWDM principle. In the case of the CCOS technology, it is found that the micro-waviness was removed completely by following the MWDM principle. The surface undulation decreased from 40 nm to less than 10 nm, and the surface root-mean-square(rms) roughness obviously reduced from 8.147 to 2.660 nm. In the case of the DWC process, the surface rms roughness reduced from 8.012 to 2.391 μm, and the cutting efficiency was improved. These results indicate that the MWDM principle can efficiently improve the machining quality of KDP optical crystal and has a great potential to machine water-soluble materials.  相似文献   

11.
Li  XiangFei  Huang  Tao  Zhao  Huan  Zhang  XiaoMing  Yan  SiJie  Dai  Xing  Ding  Han 《中国科学:技术科学(英文版)》2022,65(9):1915-1939

Complex surfaces are widely used in aerospace, energy, and national defense industries. As one of the major means of manufacturing such as complex surfaces, the multi-axis numerical control (NC) machining technique makes much contribution. When the size of complex surfaces is large or the machining space is narrow, the multi-axis NC machining may not be a good choice because of its high cost and low dexterity. Robotic machining is a beneficial supplement to the NC machining. Since it has the advantages of large operating space, good dexterity, and easy to realize parallel machining, it is a promising technique to enhance the capability of traditional NC machining. However, whether it is the multi-axis NC machining or the robotic machining, owing to the complex geometric properties and strict machining requirements, high-efficiency and high-accuracy machining of complex surfaces has always been a great challenge and remains a cutting-edge problem in the current manufacturing field. In this paper, by surveying the machining of complex parts and large complex surfaces, the theory and technology of high-efficiency and high-accuracy machining of complex surfaces are reviewed thoroughly. Then, a series of typical applications are introduced to show the state-of-the-art on the machining of complex surfaces, especially the recently developed industrial software and equipment. Finally, the summary and prospect of the machining of complex surfaces are addressed. To the best of our knowledge, this may be the first attempt to systematically review the machining of complex surfaces by the multi-axis NC and robotic machining techniques, in order to promote the further research in related fields.

  相似文献   

12.
整体叶盘等复杂曲面零件是航空发动机中的核心零件,其数控加工技术中的关键是刀具轨迹的规划技术.本文针对当今国内外复杂曲面的数控加工刀具轨迹规划的研究现状和发展进行了分析.主要对复杂曲面数控加工中三种主要刀具的轨迹规划进行了对比分析,并对刀具轨迹规划中的关键技术进行了分析,包括:轨迹拓扑、轨迹参数、干涉避免和刀轴控制的算法理论和适用特点,并对刀具轨迹规划中的曲线插补和刀具组合方向进行了分析和展望,为后续研究提升零件数控加工效率和质量打下了基础.  相似文献   

13.
基于遗传算法的无干涉刀位轨迹计算   总被引:2,自引:2,他引:2  
无干涉刀位轨迹的生成是复杂曲面数控加工编程中的核心问题.以最小有向距离原理为基础,通过对遗传算法进行改进,采用实数编码,引入局部最优徘徊策略和小生境遗传算法思想,充分发挥其全局寻优的特点,获得无干涉刀位轨迹.将其与局部寻优算法得到的刀位轨迹进行比较,可以确定加工中的欠切区域和欠切削量.该方法不仅可以在数控加工中生成无干涉刀位轨迹,而且可以为后续补充加工提供编程数据,在复杂螺杆数控加工的自动编程系统中应用,稳定可靠,收敛性好,计算效率较高.  相似文献   

14.
NURBS自由曲线、曲面的等距算法及其在数控加工中的应用   总被引:2,自引:0,他引:2  
推导了NURBS曲线、曲面的各阶导矢、等距曲线曲面的各阶导矢及其曲率的计算公式,分析了参数曲线曲面线性插值误差,讨论了插值等距曲线曲面上点的采样原则,B样条形式表达的插值曲线曲面的求解方式以及减少B样条形式表达的插值曲线曲面的数据冗余的方法,最后将上述理论应用于两轴联动行切加工的刀位计算。  相似文献   

15.
误差控制和减少加工误差是大型叶片曲面类零件五轴联动数控加工中的重要任务之一。本文作者基于分析和建立加工曲面的型面几何偏差与加工刀位规划参数的关系 ,提出几何误差的控制方法。基于刀具与工件的五维包络运动分析 ,对五轴联动加工中影响较大的的非线性误差进行较为严格的计算 ,提出自适应步长方法以有效控制刀触点轨迹误差。对五轴联动加工中的残余高度误差进行较为严格的分析 ,并提出有效控制几何误差的方法和措施。文中的方法结合CAM软件进行刀位轨迹计算 ,已成功地用于大型轴流式和混流式水轮机叶片五轴联动数控加工中 ,在满足精度要求下 ,加工叶片的效率有明显的提高 ,表明提出的方法和措施能有效控制大型塑曲面加工的几何误差。  相似文献   

16.
利用微分几何的基本原理 ,研究复杂形状刀具的建模方法 ,建立了立铣刀类刀具的数学模型 ,并分析了刀刃螺旋角的物理意义、作用和通用数学模型 ;研究了球面上、锥面上、圆弧面上等螺旋角切削刃螺旋线的数学模型。为复杂形状刀具的设计、数控加工及检验提供了理论方法和依据。  相似文献   

17.
不同定义下的带角圆回转铣刀的优劣   总被引:2,自引:1,他引:1  
回转铣恨是加工复杂曲面的重要工具,目前流行多种刃口曲线设计方法,因此比较其优劣具有工程价值,通过介绍不同定义下的螺旋角对应的带角圆的柱状回转铣刀在刃口曲线、二轴联动NC加工中的进给速度等问题的不同之处,指出了与经线成等角的定义下这种铣刀设计、NC加工及使用均具有明显优点。  相似文献   

18.
误差控制和减少加工误差是大型叶片曲面类零件五轴联动数控加工中的重要任务之一.本文基于分析和建立加工曲面的型面几何偏差与加工刀位规划参数的关系,提出几何误差的控制方法.基于刀具与工件的五维包络运动分析,对五轴联动加工中影响较大的的非线性误差进行较为严格的计算,提出自适应步长方法以有效控制刀触点轨迹误差.对五轴联动加工中的残余高度误差进行较为严格的分析,并提出有效控制几何误差的方法和措施.文中的方法结合CAM软件进行刀位轨迹计算,已成功地用于大型轴流式和混流式水轮机叶片五轴联动数控加工中,在满足精度要求下,加工叶片的效率有明显的提高,表明提出的方法和措施能有效控制大型塑曲面加工的几何误差.  相似文献   

19.
误差控制和减少加工误差是大型叶片曲面类零件五轴联动数控加工中的重要任务之一。作者基于分析和建立加工曲面的型面几何偏差与加工刀位规划参数的关系,提出几何误差的控制方法。基于刀具与工件的五维包络运动分析,对五轴联动加工中影响较大的非线性误差进行较为严格的计算,提出自适应步长方法以有效控制刀触点轨迹误差。对五轴联动加工中的残余高度误差进行较为严格的分析,并提出有效控制几何误差的方法和措施。文中的方法结合CAM软件进行刀位轨迹计算,已成功地用于大型轴流式和混流式水轮机叶片五轴联动数控加工中,在满足精度要求下,加工叶片的效率有明显的提高,表明提出的方法和措施能有效控制大型塑曲面加工的几何误差。  相似文献   

20.
汽车覆盖件模具型面一般是由大面积平坦面和一定陡立面结合的构成的自由曲面.针对汽车覆盖件模具粗加工及半精加工中球头刀效率低的问题,将非球头刀的宽行加工应用于汽车覆盖件模具粗加工与半精加工过程,在工艺上使用环形刀加工陡立面,高进给铣刀加工平坦面的组合加工方式来代替普通球头刀加工,论述了高进给铣刀在加工平坦类曲面中的优势,提出了平底类刀具铣削平坦凹曲面的最小曲率半径判定原则,并对环形刀和高进给铣刀铣削区域内的刀路轨迹进行优化.最后,在三轴数控机床上进行了实验验证,实验结果表明:宽行加工工艺与球头刀加工相比可提高加工效率44.75%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号