首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubular nanocomposite with interconnected MnO2 nanoflakes coated on MWCNTs(MWCNTs@MnO2)was fabricated by an aqueous solution method at 80°C.Scanning electron microscopy,X-ray diffraction and galvanostatic charge-discharge tests were used to characterize the structures and electrochemical performances of the as-prepared nanocomposite.The capacity reaches 1233.6 mA h g-1 at a current density of 100 mA g-1 for the first discharge,and it can still maintain a capacity of 633.1mA h g-1 after 100 charge-discharge cycles.The results show that MWCNTs with good electrical conductivity as anchors of MnO2 can provide fast electron transport channels for MnO2 in the electrochemical reactions,and the as-prepared MWCNTs@MnO2 nanocomposite is a potential anode material for lithium ion batteries.  相似文献   

2.
Shao  YeQing  Xie  YongHui  Yang  Yang  Cao  JiaQi  Li  XiuWan  Li  WangYang  Zhang  QiaoLi  Cheng  ShouLin  Cheng  ShuYing  Wang  XingHui 《中国科学:技术科学(英文版)》2022,65(7):1558-1566

Lithium metal anodes (LMAs) are considered as the promising alternatives for next-generation high energy density batteries, but are still hampered by the severe growth of uncontrollable lithium dendrites. The growth of lithium dendrites induces poor cycling lifespan and serious safety concerns, dragging lithium metal batteries out of practical applications. We designed a bilayer carbon-based structure covered with Co/C nanosheets and vertical graphene sheets (VGS). The enormous specific surface area and uniformly distributed Co nanoparticles of the CC@Co/C-VGS host are derived from its unique design, which can reduce local current density and nucleation overpotential, resulting in a dendrite-free morphology and exceptional cycling stability. Symmetric cells exhibit over 400 cycles (800 h) at a high current density/capacity of 10 mA cm?2/10 mA h cm?2. Full cells using LiFePO4 as the cathode have an enhanced rate capability and a prolonged lifespan, reaching 90 mA h g?1 after 1000 cycles at 2 C with 73.5% capacity retention. This unique design sheds light on developing high-performance LMAs.

  相似文献   

3.
MoO2 nanocrystals (NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO2 nanocrystals (about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g-1 and retain a reversible capacity of 924 mAh· g-1 after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g-1 (about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.  相似文献   

4.
以表面活性剂CTAB为模板,通过水热法及煅烧过程合成了多孔Nb_2O_5微球。对所得产品的表征和电化学性能测试结果表明:合成了正交结构的Nb_2O_5球,且其单分散性能较好,直径为900 nm左右,球上分布有很多孔径为2~70 nm的小孔,形成了独特的多孔结构,该结构增加了材料的比表面积,其比表面积为340 m~2/g。独特的多孔结构和较大的比表面积使得其作为锂离子电池负极材料时表现出优异的电化学性能:首次容量较高,多孔Nb_2O_5球的首次充放电容量分别为297.8和395.9 m A·h·g~(-1);循环性能稳定,在电流密度为20 m A/g下充放电时,第3次循环后的库伦效率几乎达到100%;倍率性能优异,在50,100 m A/g电流密度下,经过20次循环后的容量分别为139.6,117.1 m A·h·g~(-1),容量保持率都为90%以上。  相似文献   

5.
为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.  相似文献   

6.
LiCo1/3Ni1/3Mn1/3O2 was coated by a layer of 1.0 wt% CeO2 via sol-gel method. The bared and coated LiMn1/3Co1/3Ni1/3O2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammogram (CV) and galvanotactic charge-discharge test. The results show that the coating layer has no effect on the crystal structure, only coating on the surface; the 1.0 wt% CeO2-coated LiCo1/3Ni1/3Mn1/3O2 exhibits better discharge capacity and cycling performance than the bared LiCo1/3Ni1/3Mn1/3O2. The discharge capacity of 1.0 wt% CeO2-coated cathode is 182.5 mAh·g−1 at a current density of 20 mA·g−1, in contrast to 165.8 mAh·g−1of the bared sample. The discharge capacity retention of 1.0 wt% CeO2-coated sample after 12 cycles reaches 93.2%, in comparison with 86.6% of the bared sample. CV results show that the CeO2 coating could suppress phase transitions and prevent the surface of cathode material from direct contact with the electrolyte, thus enhance the electrochemical performance of the coated material.  相似文献   

7.
Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA·h·g-1 at C/10 (14.8 mA·g-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh·g-1 at a high rate of 5C. The apparent lithium-ion diffusion coefficient (D app) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2·s-1 showing a regular “W” shape curve plotted with test voltages. The Dapp of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.  相似文献   

8.
TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950°C for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA·h/g. And the rate capacity is 73.2 mA·h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.  相似文献   

9.
A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively.  相似文献   

10.
Lithium iron phosphate (LiFePO4) was synthesized from LiOH, FeSO4 and H3PO4 by a hydrothermal process at 180°C. The samples were characterized by X-ray diffraction, scanning electron microscopy and chemical analysis. Electrochemical performance of the samples was tested in terms of charge-discharge capacity and cycling behavior. The results indicated that Fe(III) impurity had obviously effect on the electrochemical properties of LiFePO4, and the formation of Fe3+ was caused by the oxidation of Fe2+ in the dissolving and feeding processes accompanying the increase of pH value. It was found that the precipitation separation was effective in decreasing the content of Fe3+ in the solution of FeSO4 and the sealed feeding was useful in preventing the conversion of Fe2+ to Fe3+. When the content of Fe3+ < 0.5 wt%, the hydrothermally synthesized LiFePO4 calcined at 750°C with sucrose as carbon source exhibited an initial discharge capacity of 154.9 mAh·g−1 at the rate of 0.1 C (1 C = 150 mA·g−1) and the cycling retention rate could reach 98% after 50 cycles at room temperature.  相似文献   

11.
以四水合乙酸镍为原料、硫代乙酰胺为沉淀剂和硫源,采用一步溶剂热法合成了介孔富有的多孔NiS中空亚微球。并采用XRD、FESEM、EDS、TEM、HRTEM、SAED、XPS和氮气吸脱附测试以及循环伏安(CV)、恒流充放电、交流阻抗等进行了材料表征和电化学性能测试。研究结果表明,所合成的NiS为介孔富有的多孔中空亚微球结构,且其尺寸大小较为均匀,壳层较薄。这种独特的多孔中空结构使得其作为超级电容器电池型正极材料时表现出优异的电化学性能:3 A·g~(-1)电流密度下的比容量值为155.4mA·h·g~(-1),20 A·g~(-1)电流密度下的比容量值仍然保持在92.9 mA·h·g~(-1),倍率容量保持率为59.8%,且在5 A·g~(-1)电流密度下5 000次循环后比容量仍可达115.3 mA·h·g~(-1),初始容量保持率为85.0%。  相似文献   

12.

Co-MOF衍生的NiCo-LDH碳布三维纳米结构的构筑及高性能超级电容器研究

王苹 , 丁宁1, 王艺蓉1, 党宇鹏1, 韩丹丹1, 危岩2

(1.吉林化工学院 生物与食品工程学院,吉林 132022;

2.清华大学化学系,前沿聚合物研究中心,北京 100084)

# 作者对本文有同等贡献.

中文说明:

采用离子刻蚀/交换反应法制备了钴基金属有机骨架(Co-MOF)衍生的NiCo层状双氢氧化物(NiCo-LDH)三维多孔纳米结构。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对合成的样品进行了形貌和结构表征。作为电容器正极,优化后的NiCo-LDH样品在1 A.g-1时具有226.3 mAh.g-1的高比容量。基于NiCo-LDH正极和活性炭(AC)负极的混合超级电容器(HSC)比能达到27.39 Wh.kg-1,并且具有较好的循环稳定性(5000次循环后容量保留率为93.5%)。

关键词: 金属有机框架; 超级电容器; 能量密度; NiCo-LDH

  相似文献   

13.
为改善锂离子电池硅负极材料的电化学性能,利用镁热还原法制备了不同铁掺杂量的多孔硅/硅铁合金复合材料,并对其结构以及在锂离子电池中的充放电性能进行了研究.材料均呈现多孔结构,硅铁合金均匀分布在孔道内部.多孔硅/硅铁合金复合材料具有较好的循环稳定性,在0.1C倍率下循环100圈后可逆容量为1 133.5 m A·h/g,容量保持率为66%;在1C倍率下可逆容量仍可以达到776.9 m A·h/g.  相似文献   

14.
以固相烧结法制备的尖晶石型锰酸锂为基础,对其结构中掺杂复合非金属元素B和F,合成了B、F掺杂的尖晶石。通过X射线衍射、扫描电镜、电化学分析方法对试样的晶体结构、表面形貌及电化学性能进行表征。结果表明,采用B、F包覆的锰酸锂与纯锰酸锂的X射线衍射结果相似,波峰尖锐且峰值高;随着B的掺入,尖晶石作为正极材料充放电的循环性能得到了提高,但是其初始容量较低,仅为102.3mA·h/g。随着加入复合非金属元素B和F,样品的初始容量提高到了110.9mA·h/g,50次循环后的容量保持率为83.14%。实验结果表明,复合掺杂有效提高了锰酸锂的电化学性能。  相似文献   

15.
1 IntroductionRare earth-based hydrogenstorage alloys ofAB5typehave beenthe most major electrode material for small-sizeNi/MHbatteries because of their high discharge capacity,superior highrate capability andfavorable ratio of pricetoperformance. But their electrochemical performances be-come worse when the alloys are applied to large-size Ni/MHbatteries of electric vehicles .Thisfact may be due tothe rising of temperature inside the large batteries causedbythe high electric current of char…  相似文献   

16.
通过两步水热法合成了可用作锂离子电池负极材料的二氧化锡-石墨烯-炭(SnO2-Gn-C)三元复合物.采用X射线粉末衍射(XRD)、透射电镜(TEM)和电化学测试研究了SnO2-Gn-C复合物的晶型结构、形貌和电化学性能,并考察了反应温度和Sn/Gn物质的量比对复合物电化学性能的影响.实验结果显示,SnO2-Gn-C复合物在200mA· g-1电流密度下初始放电比容量达到1 225mA·h·g-1,50次充放电循环后比容量仍有约229mA.h·g-1.SnO2-Gn-C良好的电化学性能主要归结于大比表面积的石墨烯对SnO2纳米粒子的良好分散作用、石墨烯和炭的高导电性以及炭包覆后的复合物充放电时体积效应的显著减小.  相似文献   

17.
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.  相似文献   

18.
LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the films were examined by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. LiMn2O4 thin films of different thickness derived from solution deposition and rapid thermal annealing are homogeneous and crack free with the grain size between 20 nm and 50 nm. The specific capacity of these films is between 42 and 47 μAh·cm2·μm−1. The capacity decreases with the increase of discharge current density. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the film thickness increases from 0.18 μm to 1.04 μm. The lithium diffusion coefficients of these films are in the same order of 10−11 cm2·s−1.  相似文献   

19.
Manganese dioxide was synthesized by electrodeposition method with Mn (CH3COO)2?4H2O as a raw material. La(NO3)3?6H2O was doped in electroyte during the preparing process to improve the performance of MnO2 electrodes. The micrographs, crystal structure and element content of electrodes were analyzed by SEM, XRD and atomic absorption spectroscopy, respectively. It is found that the La content ratio in the dioxide can be easily controlled by adjusting the composition of the plating solution. Appropriate amoun...  相似文献   

20.
以Li2CO3和TiO2为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材料,利用XRD、SEM和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在1.0~2.2 V(vs.Li/Li+)范围内,以0.1 mA/cm2的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒电流充放电测试。其首次放电比容量为167 mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号