首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于自适应神经网络的谐波分析模型与算法   总被引:5,自引:0,他引:5  
提出一种周期信号的谐波基函数神经网络模型及基于该模型的谐波分析算法.该算法将基波频率和谐波幅值相位共同作为权值参与学习调整,通过自适应测量原理估计各次谐波参数,算法的收敛性定理为学习率的选择提供了理论依据.对信号存在频率偏差和含有白噪声两种情况分别进行了仿真,结果表明该算法精度高、收敛速度快,适合于非同步采样和短数据下的电力系统谐波分析.  相似文献   

2.
电网谐波的高精度检测是电能计量和电能质量评估的基础。针对神经网络的谐波检测算法中,计算精度受基波频率精度影响较大的问题,提出用数字滤波结合牛顿反插值算法得到高精度的基波频率,然后用线性神经网络算法检测电力系统各次谐波的频率、幅值和相位。计算结果表明,该算法在频率波动和白噪声干扰的情况下,依然能得到高精度的谐波参数信息,其精度远高于FFT算法与加汉宁窗的FFT算法,在电力系统谐波测量中有一定的应用价值。  相似文献   

3.
滤波器-神经网络的谐波检测方法   总被引:2,自引:0,他引:2  
电网谐波的高精度检测是电能计量和电能质量评估的基础.针对神经网络的谐波检测算法中,计算精度受基波频率精度影响较大的问题,提出用数字滤波结合牛顿反插值算法得到高精度的基波频率,然后用线性神经网络算法检测电力系统各次谐波的频率、幅值和相位.计算结果表明,该算法在频率波动和白噪声干扰的情况下,依然能得到高精度的谐波参数信息,其精度远高于FFT算法与加汉宁窗的FFT算法,在电力系统谐波测量中有一定的应用价值.  相似文献   

4.
基于卷积窗的电力系统谐波理论分析与算法   总被引:25,自引:5,他引:25  
研究卷积窗在电力系统高精度谐波分析中的应用,并将卷积窗与现有的著名窗函数进行比较.结果表明:与具有相同主瓣宽度的其它窗函数相比,当采样同步误差较小时,卷积窗具有最小的频谱泄漏效应,因此特别适合于电力系统的高精度谐波分析.由于所提出的方法能够通过实时改变采样间隔来进行频率跟踪,从而保证采样同步误差较小.该加窗算法的特点是测量精度极高、算法简单且适用于频率缓变的周期信号.  相似文献   

5.
基于采样频率自适应的高精度谐波分析软件算法   总被引:3,自引:1,他引:3  
潘立冬  王飞 《电测与仪表》2006,43(5):9-12,21
采样不同步产生的同步误差是造成频谱泄漏和影响谐波分析准确性、检测精度的重要原因。本文提出一种基于采样频率自适应技术的软件算法,通过采样数据计算得到信号较为准确的实际频率,并根据实际频率动态调整采样的时间间隔,实现采样频率的自适应,从而减少同步误差,降低频谱泄漏的影响。该软件算法实现简单,精度较高,对于频率变化较缓慢的电力信号能够明显地提高测量精度。仿真结果验证了算法的特性,给电力系统高精度谐波分析提供了一种有效的方法。  相似文献   

6.
数字化变电站采用固定采样频率10 k Hz采样数据,每周期采样点数为200,不为2的整数次幂;且基波频率的波动会导致非同步采样,直接运用离散傅里叶或快速傅里叶变换分析谐波,会对测量结果产生较大误差,不满足电力系统谐波分析精度的要求。算术傅里叶变换(AFT)算法简单且并行性好,对计算点数无限制,适用于分析离散信号的频谱。但该算法需要不均匀的采样点,目前电力系统所得到的是均匀采样的数据,因此运用AFT时需先对均匀采样的离散信号进行插值,而插值过程将不可避免地引入误差,影响到AFT算法的谐波分析精度。AFT常用的插值算法为零次插值,此方法存在较大误差,严重影响谐波分析精度,不能满足电力系统的要求。对比了四种平面插值算法,通过仿真分析比较了这四种方法对AFT谐波分析精度的影响。最后选用三次样条插值算法来提高AFT的谐波分析精度。仿真结果表明:在非同步采样条件下,用三次样条插值的AFT谐波分析方法精确度高,稳定性好,满足谐波分析精度的要求,为电力系统谐波分析开辟了新思路。  相似文献   

7.
在非同步采样情况下,利用快速傅里叶变换(FFT)进行电力系统谐波分析时,会带来频谱泄漏现象和栅栏效应,影响了信号的量测精度.为此,提出了一种汉宁双窗全相位FFT三谱线插值检测谐波算法.该算法原理是:在汉宁双窗全相位FFT分析的基础上,利用基波频点附近的3条相邻谱线幅值作比,计算出频率校正量,并由此估计出谐波信号的幅值;然后,结合全相位FFT分析的相位不变性,将采样点处幅值最大的谱线相位作为信号的初相.仿真实验表明,与其他插值算法相比,该算法可以更有效地降低谐波参数检测误差,减少白噪声干扰的影响.  相似文献   

8.
通过滤波器和牛顿插值算法,得到了高精度的基波频率;用改进的线性人工神经网络方法进行谐波测量;给出了该方法用于谐波分析的算例。仿真结果表明:该方法在系统频率波动时,依然能得到高精度的谐波分析信息,其精度远高于快速傅里叶算法与加汉宁窗的傅里叶算法,在电力系统谐波分析中有一定的应用价值。  相似文献   

9.
基于插值FFT算法的间谐波分析   总被引:46,自引:8,他引:46  
间谐波是非整数倍基波频率的谐波信号.间谐波除了具有一般谐波信号的特性外,还会影响谐波补偿装置,因此准确检测间谐波的参数对于电力系统具有十分重要的意义.快速傅立叶变换在非同步采样情况下存在着较大的误差,因而无法直接获取准确的间谐波参数.为了减小非同步采样的影响,提高间谐波分析精度,提出了基于加窗插值FFr算法的间谐波参数估计,分析和推导了基于Rife-Vincent(Ⅲ)窗的间谐波频率、幅值和相位的估计公式.在此基础上,对插值公式作适当修改,可以进一步提高分析精度.仿真结果表明:改进后的算法在非同步采样时,对电网间谐波和谐波参数的估计具有很高的精度,有利于电力系统中谐波参数的准确获得.  相似文献   

10.
采用DFT进行电力系统谐波分析时由于很难做到同步采样和整周期截断,由此造成的频谱泄漏严重影响谐波分析的效果。提出了一种适于高精度实时电力谐波分析的自适应调整采样频率的电网频率跟踪算法。该算法先采用加窗DFT得到精确的电网频率,然后采用加窗的递推DFT,动态调整采样频率,以实时跟踪电网频率。MATLAB仿真结果证实了此算法的有效性。  相似文献   

11.
电网工频时变将导致固定采样率下的非同步采样现象,降低谐波检测精度。A类谐波测量仪器通过硬件锁相克服了该问题,但高昂的价格使其难以广泛应用于实际工程。在嵌入式系统中通过合理的算法校正非同步采样结果,实现谐波的准确测量,能够有效降低设备成本。首先分析频谱泄漏抑制条件与多点变换谐波测量算法特性,研究不同变换点数对频谱的影响,推导在不同采样条件下的最佳变换点数选择式。其次提出优先计算基波及低次奇次谐波频率的平均参考工频优化算法,进一步改善了整体计算效果。最后在STM32嵌入式系统上实现了算法。模拟数据计算及LED灯谐波检测实验结果均验证了在非同步采样下,基于该算法的嵌入式系统谐波测量的高精度性与高可靠性。  相似文献   

12.
传统的相位差校正法在应用于电力谐波测量时,由于频谱泄漏问题的存在,在窗函数的旁瓣衰减速度较慢时存在较大误差,而校正过程对频域解析式的依赖又限制了窗函数的选用。采用一种基于汉宁窗的改进相位差校正法,其原理是对非同步采样序列的加窗快速傅里叶变换结果进行多项式变换,再依据变换所得的新频谱序列进行谐波参数的校正。将该方法和其他常用方法进行数值仿真对比,在基频随机变化的情况下进行10 000次仿真计算得到其标准误差,并缩短采样窗长以探究其实时性。结果表明,改进相位差校正法较其他常用方法有更高的精度;当基频在47~53 Hz范围内随机变化时,高次谐波的测量精度达到10-5次;在100 ms的采样窗长下,也能满足IEC 61000—4—7标准的精度要求。在兼顾计算精度的同时,该文校正公式由汉宁窗解析式推导得到,简便明了,所提方法是一种有实用价值的谐波参数检测算法。  相似文献   

13.
针对电力谐波的准同步加窗分析法存在所用信号周期多、计算复杂和谐波泄漏分布不均匀等问题,基于准均匀采样提出了一种仅需1个信号周期特别适于单片机快速、准确实现的电力谐波分析方法。准均匀采样的时间离散误差不随连续采样而积累,在1个信号周期内取2的整数次幂个同步采样点,直接采用FFT算法即可实现谐波分析。基于信号的基波近似,并假设信号采样时的时间离散误差和幅值量化误差均服从均匀分布,对采用准均匀采样的电力谐波估计误差进行了分析。给出了基于准均匀采样电力谐波分析的算法和具体实现流程,流程中通过长整型变量对采样时间进行精确控制,算法简单高效。最后对准均匀采样谐波分析算法进行了仿真,结果表明基于通用单片机即可实现电力谐波的快速、准确分析。  相似文献   

14.
夏向阳  罗安  李刚 《高电压技术》2007,33(6):151-155
为分析不同电网谐波检测方法的特点,介绍了基于瞬时无功功率的谐波分频检测法和基于最小二乘法的谱估计谐波分频检测法,仿真分析、比较两种方法的结果表明前者能够瞬时检测到谐波分量,实时性很好,但检测结果包括的幅值和相位信息不能分离开来;而后者可离线计算特定次谐波,实时性较强,算法也较简单,不但能算出谐波幅值,还能求出其相位,且和采样起始时刻没有关系,但是此方法要求采样严格的与基波过零同步。  相似文献   

15.
用加Hanning窗插值高阶正弦拟合法测介损角   总被引:3,自引:0,他引:3  
电力系统频率偏离50Hz时常规的傅立叶变换用于频谱分析时易产生频谱泄漏和栅栏效应,使介损角计算产生误差。高阶正弦拟合法以信号的基波频率、谐波幅值和相角作为变量对信号进行拟合,该法能有效减轻谐波存在和频率波动的影响,精确测量电气设备的介损角。高阶正弦拟合法的关键是最小二乘的计算,通常使用傅立叶变换结果作为最小二乘法的初始值,当频率偏离50Hz较多时,傅立叶变换结果与谐波分析的真实值相差较大,将其作为初值的最小二乘计算量大,影响了高阶正弦拟合法的实时性。加Hanning窗插值谐波分析法通过加窗和插值能有效减轻频率偏离50Hz时的频谱泄漏和栅栏效应,且有快速算法较之傅立叶变换增加的计算量很少。为提高高阶正弦拟合法计算介损角时的实时性,将加Hanning窗插值谐波分析法的结果作为高阶正弦拟合法的初始值,所得初始值与精确值的差值减少,最小二乘法的迭代次数从2次减到1次,容性设备仿真信号的计算时间从约0.82ms减到约0.45ms,结果表明所提出的方法能有效减少介损角的计算时间,提高介损角测量的实时性。  相似文献   

16.
一种基于离散小波变换的谐波分析方法   总被引:6,自引:0,他引:6  
在离散小波变换的基础上,结合加窗插值FFT,提出了一种组合式谐波分析算法。该算法先用加窗插值FFT计算基波频率,然后对加窗信号进行频率调制,将谐波分量变换成直流或近似直流分量。用离散小波变换分离出这些分量后用于计算谐波幅值和相位。计算机仿真和实验结果表明,该算法可在高噪声污染情况下,准确计算谐波参数,尤其谐波相位角。DSP评估板上的实现证明了该算法可用于实时谐波分析。  相似文献   

17.
自回归(Autoregressive,AR)谱估计方法频率分辨率高,但不易对间谐波幅值和相位实现精确计算;基于DFT的频谱分析方法能在辨识出各分量频率的基础上计算得到高精度的间谐波参数,但频率分辨率低。为此提出了一种结合这2种方法优势的算法来检测间谐波。首先采用基于最优窗加权修正的Burg算法估计出信号所含分量的大致频率,然后结合软件同步采样后的FFT频谱来分析计算各分量参数。同步采样时基波和谐波无泄漏,可以根据同步采样FFT谱线中只与间谐波有关的谱线来计算间谐波,此时间谐波谱线之间的相互干扰可通过利用间谐波谱线求解与间谐波参数有关的方程组来克服。最后对间谐波所靠近的基波和谐波谱线进行修正,就能保证谐波和间谐波参数精度都较高。实验证明,这种基于AR谱估计和频谱分析的间谐波检测方法能在分辨率和精度上得到兼顾。  相似文献   

18.
基于小波和短时傅里叶变换的电网谐波分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为了测量电网中的波动谐波,将小波变换和短时傅里叶变换方法相结合用于电网谐波分析。通过小波变换设计出一组带通滤波器来分离出基波和各次谐波,并采用短时傅立叶变换计算出基波和各次谐波的幅值、频率和相位。仿真结果表明,当信号中存在高斯白噪声时该算法仍可准确检测出基波和2到63次谐波的幅值、频率和相位,且算法简单易于实现。  相似文献   

19.
指出了定速率采样下,非同步采样造成的频谱泄漏是相位差校正法测量误差的主要来源,尤其在对频率宽范围波动的电网信号进行连续测量时,采用相位差校正法可能造成测量失败。文中提出了一种基于自适应采样的改进方法。根据前次测得的基波频率与前次计算所得的频率变化率来预测电网的实时基波频率,并实时修正采样频率,使之跟踪变化的基波频率。分别在自适应采样与定速率采样下使用相位差校正法对频率动态变化的电网信号进行仿真对比。结果表明,该方法较定速率采样方法对同一变频电网信号的幅值测量精度提高一个数量级,相位测量精度提高3~14倍,采样窗长为IEC标准规定窗长的40%。该方法减小了因基波频率动态变化而产生的频谱泄漏,使相位差校正法在频率宽范围波动的电网中能够满足谐波连续测量的精度与实时性需要。  相似文献   

20.
This paper presents the design and analysis of an adaptive algorithm for tracking the amplitude, phase and frequency of the fundamental, harmonics and interharmonics present in time‐varying power sinusoid in white noise. If frequency, amplitude and phase of the multiple sinusoids become nonstationary, they are estimated as an unconstrained optimization problem using robust and low complexity multi‐objective Gauss–Newton algorithm. The presented algorithm deals with frequency drift and can accurately estimate frequency variation, amplitude and phase variation, as well as harmonic amplitude and phase variations. Further, the learning parameters in the proposed algorithm are tuned iteratively to provide faster convergence and better accuracy. The excellent tracking capability of proposed multi‐objective Gauss–Newton algorithm is shown through simulation and experimental results in a nonstationary environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号