首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
分析了一起发生在西北330 kV线路中由线间零序互感影响而导致的纵联零序方向保护误动事件.分别从理论和定量的不同角度,深入分析了网络结构和纵联零序方向保护误动之间的联系,总结了双回线不同运行情况下纵联零序方向保护的动作行为,指出弱电强磁的网络联系是保护误动的原因,两侧零序电压反相是保护误动的必要条件.针对这种弱电强磁问题,提出采用基于故障类型的零序方向元件替代零序方向元件的解决措施,录波数据的分析结果证明了这种方法的有效性和准确性.  相似文献   

2.
平行线路若在强磁弱电联系方式下运行,一回线路的接地故障可能会引起另一回线路零序功率方向保护误动。分析了强磁弱电情况下零序功率方向保护误动的原因以及双回线路各种连接方式对方向元件产生的影响。针对零序方向保护容易误动的情况,提出使用负序功率方向元件作为纵联方向保护的方向元件并对采用负序补偿电压代替负序电压做了分析。PSCAD的大量仿真表明,负序功率方向元件可以正确反应正常运行、故障线路的区内、区外故障,同时在非故障线路中不会误动。  相似文献   

3.
平行线路若在强磁弱电联系方式下运行,一回线路的接地故障可能会引起另一回线路零序功率方向保护误动.分析了强磁弱电情况下零序功率方向保护误动的原因以及双回线路各种连接方式对方向元件产生的影响.针对零序方向保护容易误动的情况,提出使用负序功率方向元件作为纵联方向保护的方向元件并对采用负序补偿电压代替负序电压做了分析.PSCAD的大量仿真表明,负序功率方向元件可以正确反应正常运行、故障线路的区内、区外故障,同时在非故障线路中不会误动.  相似文献   

4.
平行线在弱电强磁的影响下,相邻线接地故障时可能会引起本线零序方向纵联保护的误动。文中分析了目前克服弱电强磁所采取的解决方案,指出消除零序方向元件比相电压中零序互感电压是防止零序方向保护误动的一种有效手段。根据上述原理,提出了2种新型零序方向保护方案。考虑零序电压与母线相电压受到相同的零序互感影响,引入非故障相电压差、零序电压与故障相电压之差2种电压作为比相参考电压,从而形成不受零序互感影响的零序方向保护判据。PSCAD/EMTDC的仿真分析表明,文中提出的新保护方案在平行线弱电强磁时能保证可靠不误动。  相似文献   

5.
通过电磁暂态仿真和向量图定性分析相结合的方法,详细分析了无电磁联系、弱电强磁联系和强电强磁联系三种情况下,两平行互感线路在接地故障时其四个端口的零序电流、电压之间的相位关系,从而得出两平行互感线路纵联零序方向保护在没有电联系的非故障线路一定会误动,弱电强磁联系的非故障线路误动的可能性较大,强电强磁联系的非故障线路一般不会误动的分析结论。另外,还给出了弱电强磁联系的非故障线路的某一端综合零序电压或电流有可能等于零或者接近于零的情况的分析结论。  相似文献   

6.
平行线弱电强磁模型下零序方向元件改进   总被引:2,自引:0,他引:2  
针对近来几起高压电网中由于线路零序互感影响而导致的纵联零序保护误动事件,分析了出现这种问题的弱电强磁联系的典型电网结构形式,研究了相邻线互感对纵联零序方向元件的影响,并分析了几种解决方法,提出采用一种新型的基于故障类型的零序方向元件,分析了该元件的可行性和具体方案流程,结合2次现场事例的数据分析验证了该方法的正确性。  相似文献   

7.
平行双回线路高阻接地故障保护的新思路   总被引:1,自引:1,他引:0  
通过实例分析说明平行双回线路在强磁弱电联系运行方式下,一回线路末端发生高阻接地故障时,非故障线路纵联零序方向保护会误动,而纵联负序方向保护不会误动,提出在使用纵联零序方向保护切除高阻接地故障的保护装置中,增加纵联负序方向保护,退出纵联零序方向保护以防止误动的发生,并讨论了纵联负序方向保护新方案,方案增加负序电抗继电器和负序电流、电压闭锁,并带小延时动作,从而确保平行线之一故障时,非故障线路纵联负序方向保护不会误动,而故障线路发生高阻接地故障时,纵联负序方向保护能带小延时可靠切除故障.  相似文献   

8.
同杆线路纵联零序保护误动分析及措施(Only in Chinese)   总被引:3,自引:5,他引:3  
分析了一起在广东电网近期发生的由于线路零序互感影响而导致的纵联零序保护误动事件。从定量计算和理论分析的不同角度,深入研究了强磁弱电联系的网络关系及其对纵联零序保护动作行为的影响,总结了保护误动原因和特点,分析了可能发生误动的典型电网结构形式,并针对当今越来越紧密联系的电网,提出了几种有效解决互感对纵联零序保护动作行为影响的措施。  相似文献   

9.
相较于单回线,同塔双回和多回输电线路发生故障时零序特征更为复杂多变,导致传统的纵联零序方向保护误动或拒动频发。首先从灵敏度、弱电强磁和跨线故障三个方面分析了传统纵联零序方向保护的性能,指出其中存在的问题。然后,提出了一套新型的纵联零序方向保护方案:通过零序方向电压补偿算法提升零序方向元件在高阻故障下的灵敏度,通过零序综合方向元件消除零序互感的影响,构造了跨线故障识别逻辑。最后,通过三个现场实例分析,验证了该算法的有效性。  相似文献   

10.
就零序互感对相邻线路纵联零序方向保护的影响进行了分析。采用互感线路一般模型,结合零序方向元件的动作原理,分别在发生内部故障和出口处反方向故障的情况下,对纵联零序方向元件的动作行为进行了详细的理论推导。研究表明,不论本线路发生内部故障或出口处反方向故障,该线路纵联零序方向保护不受零序互感的影响,能够正确动作;与其相邻的互感线路纵联零序方向保护是否误动,取决于两互感线路间电气联系的紧密程度,电气联系越强,误动可能性越小。利用PSCAD进行了仿真验证。  相似文献   

11.
零序互感对相邻线路纵联零序方向保护的影响   总被引:3,自引:0,他引:3  
就零序互感对相邻线路纵联零序方向保护的影响进行了分析.采用互感线路一般模型,结合零序方向元件的动作原理,分别在发生内部故障和出口处反方向故障的情况下,对纵联零序方向元件的动作行为进行了详细的理论推导.研究表明,不论本线路发生内部故障或出口处反方向故障,该线路纵联零序方向保护不受零序互感的影响,能够正确动作;与其相邻的互感线路纵联零序方向保护是否误动,取决于两互感线路间电气联系的紧密程度,电气联系越强,误动可能性越小.利用PSCAD进行了仿真验证.  相似文献   

12.
利用相电流突变防止零序方向元件误动的方法   总被引:1,自引:0,他引:1  
弱电强磁情况下相邻回线间互感是造成零序方向元件误动的根本原因。文中分析了零序方向元件正确工作的条件,对比了零序方向元件正确动作与误动作情况下该回线电气量的特征差异,得出了误动线路的三相电流具有相同突变的故障特征。在此基础上利用模型误差识别三相电流相同突变特征,提出了一种防止零序方向元件误动的方法。通过PSCAD建立同塔双回线路模型进行仿真验证,仿真结果表明:文中方法能够可靠闭锁相邻回线短路、断线情况下健全线路的零序方向元件,不会闭锁该线路故障情况下的零序方向元件。所述方法具有识别弱电强磁环境下相邻回线互感的能力,提高了零序方向元件的适应性,具有实用价值。  相似文献   

13.
针对于弱电强磁情况下平行线路相邻线接地故障时引起本线路零序方向元件误判的问题,分析了不同故障下各电压序分量的特点,基于不同的电压序分量,形成了零序方向元件。该方向元件根据不同故障类型,使用零序电压与正序电压合成方式作为比相参考电压。新提出的零序方向元件在弱电强磁的平行线路系统中能正确判别故障方向,防止纵联零序方向保护的误动,PSCAD仿真验证了该方向元件的有效性。  相似文献   

14.
针对一起同杆并架的双回平行运行线路纵联零序保护误动作,通过理论分析得出了在强磁弱电情况下由于线路零序互感影响而导致纵联零序保护误动的结论.同时对此种情况国内的应对措施进行了总结.在此基础上,作者提出基于故障类型,增加比较特殊相正序电压和零序电压之间相角的闭锁元件的解决方案,可以避免保护误动;并结合现场的录波数据进一步论...  相似文献   

15.
介绍了平行运行线路的零序互感效应对线路纵联零序方向保护产生影响的形式和原理,通过理论分析、实验室仿真试验、电网事故分析实例从平行运行线路强电强磁联系和弱电强磁联系这两种情况对该课题进行了详细的分析研究,并提出了预防措施。  相似文献   

16.
纵联零序方向保护作为切除超高压电网线路接地故障的快速保护,当线路末端发生高阻接地故障或继电保护背后为大电源系统时纵联零序方向保护安装处的零序电压可能会低于动作门槛值,从而造成纵联零序方向保护因灵敏度不足而拒动。分析了基于本地零序电压补偿的纵联零序方向保护的动作特性,指出补偿度会影响零序方向元件的判断,特别是双回线中一回线非全相运行时,零序电压过补偿会导致健全线的纵联零序方向保护误动。最后通过理论推导和仿真算例证明了分析的正确性。  相似文献   

17.
平行线路纵联零序方向保护安全性分析   总被引:3,自引:1,他引:2  
着眼于纵联零序方向保护的安全性,探讨了平行线路区内区外各种接地故障,研究发现,对于两侧均无电气联系的平行线路,纵联零序方向保护一定误动;对于一侧或者两侧有电气联系的线路(包括部分平行),是否误动取决于两者间联系是磁强于电还是电强于磁;对于一侧共母线的系统,此时纵联零序方向保护其实是安全的;对于同杆并架线路,纵联零序方向保护的安全性亦能得到保证。  相似文献   

18.
张永强  董烨 《电力学报》2011,(2):99-103
由于同杆线路故障时电磁耦合的特殊性,纵联零序保护误动的情况时有发生,而其零序方向元件在故障位置的判断中起着关键的作用.双回线系统发生接地故障时,由于零序互感的影响,零序功率方向元件不能正确判断故障发生的位置,导致纵联零序保护误动.结合电网运行实际,基于不用运行方式和同杆架设形式,对不同运行方式下零序互感对纵联零序保护的...  相似文献   

19.
同走廊出线架设的平行双回线之间存在零序互感,产生一纵向零序电压源串接于线路.当Ⅰ线故障时,Ⅰ线的A侧开关先动作跳开.从电网拓扑结构和理论分析表明,Ⅰ线和Ⅱ线间此时存在较弱的电气联系和较强的电磁联系,构成弱电强磁现象,导致非故障Ⅱ线两侧3Uo反相,使零序功率方向元件误判为区内正向故障,从而使保护误动作.通过比较和分析,使Ⅱ线两侧3Uo反相造成保护误动最主要原因是在Ⅰ、Ⅱ平行双回线路上形成弱电强磁现象.电力系统综合分析程序PSASP 仿真结果也表明这一结论的正确性.  相似文献   

20.
文中分析了一起500 kV和220 kV同杆并架线路,在500 kV线路末端发生故障时,220 kV线路纵联零序保护误动的原因,并从一般性原理上分析同杆架设双回路零序互感引起纵联零序保护误动的机理.分析表明在弱电耦合的情况下由于零序互感的存在,在相邻线路发生接地故障时,由于本线路两侧零序电压出现反相,使得纵联零序方向保护误判为线路内部故障,引起保护装置误动,为同类事故的分析提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号