首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在机端电压跌落程度不深的情况下,双馈风电机组(DFIG)不投入撬棒,而是通过改变转子侧控制策略的方法抑制转子侧过电流,此时定子短路电流中会产生衰减暂态电流分量,而DFIG控制系统的PI参数是影响该衰减暂态电流分量的主要因素。以机端发生对称故障的情况为例,针对机端电压跌落程度不深时撬棒保护未投入的情况,推导了DFIG短路电流的表达式,从理论上分析了PI参数对其短路电流特性的影响,并且辅以PSCAD仿真验证分析了在机端电压跌落轻微的情况下DFIG的短路电流特性。  相似文献   

2.
为避免电网电压不对称跌落导致双馈风电机组(DFIG)脱网运行,分析了电网不对称故障时双馈风力发电机组直流母线电压波动机理,直流侧过电压这一现象主要由定子侧直流分量和电网电压负序分量引起.通过参考系坐标变换导出在正负序坐标系中双馈感应发电机的电压和电流方程,建立了正、负序坐标系下DFIG数学模型,利用机、网变流器协调控制方法,在不对称电网故障期间,机侧变流器转子电流的负序分量控制为零,网侧变流器采用双闭环正、负序电流控制抑制网侧负序分量,结合功率计算模块,有效抑制了机组电磁转矩与电流的2倍频波动,以及直流母线电压与电流负序分量的波动,改善了DFIG在不对称电网故障下的动态性能.仿真结果表明了该控制策略的可行性.  相似文献   

3.
由高压直流输电系统换相失败引起的送端风电场母线低高电压连续故障,会对双馈感应发电机(DFIG)产生严重的暂态冲击,现有单一的风机低压、高压故障穿越方案难以完全适应此类连续故障穿越的要求。为此,提出了一种结合重构式网侧变流器与超导磁储能装置的软硬件协同穿越方案,以提升DFIG的连续故障穿越能力。在故障期间,网侧变流器由并联运行模式切换至串联运行模式,以维持定子端电压不变为目标,并控制转子侧变流器根据并网点电压自适应发出动态感性/容性无功电流。仿真结果表明,所提方案既可以维持DFIG的机端电压,又可以为电网提供无功支撑,有效地实现DFIG的低高电压连续故障穿越。  相似文献   

4.
电网发生故障情况下,双馈风力发电机(DFIG)受电机电磁暂态和变流器调控的耦合影响,短路特性更为复杂。针对该问题,提出一种综合考虑网侧和转子侧变流器暂态调控下,双馈风力机组定转子短路电流的计算方法。首先,建立考虑转子侧变流器控制的DFIG故障等值网络,并推导该网络下定转子电流的解析式,在此基础上,计及直流母线电压波动情况,定量描述短路过程中网侧变流器双环暂态调控过程,据此揭示定子短路电流二倍频谐波分量的产生机理,并推导谐波分量的表达式,最终得到定转子全电流解析式。仿真结果验证了所提方法的正确性及可行性。  相似文献   

5.
双馈风电机组(doubly-fed induction generator,DFIG)多机并网系统发生故障时,各DFIG采用的控制方式和短路计算模型不尽相同,会对电网短路电流分布产生影响。为此,提出一种计及DFIG控制方式判断的电网短路电流计算方法。DFIG控制方式主要取决于机端电压跌落程度,因此针对具有辐射状接线结构的DFIG多机并网系统,分析了持续励磁控制和投crowbar保护两种控制方式下DFIG故障模型对系统故障电压分布的影响,根据所得电压分布特性提出一种故障后DFIG多机控制方式判断方法。然后与传统的同步发电机供电系统对比,给出了适用于DFIG并网系统的节点电压方程以及电网短路计算程序框图。最后以6台DFIG接入电网为例,仿真验证了所提DFIG控制方式判断方法和短路电流计算方法的有效性。  相似文献   

6.
由于双馈风机(DFIG)的短路电流特性与传统电机不同,使其保护整定变得困难。针对电网对称故障下双馈风机短路电流,提出一种同时考虑机侧变流器(RSC)和网侧变流器(GSC)故障期间特性的双馈风机短路电流实用计算方法。在电网电压轻度跌落时,考虑RSC和GSC对风机暂态特性的影响。在电网电压深度跌落时综合考虑RSC、GSC和撬棒保护(Crowbar)的影响,把风机短路电流视为定子短路电流和变流器GSC输出电流两部分之和。建立双馈风机短路电流计算数学模型,并在数学模型中体现Crowbar动作的延时性。计算过程以Crowbar动作时刻为时间分界点,获得短路电流时域表达式,计算短路电流的最大值和有效值。在PSCAD中进行仿真验证,验证所用方法的准确性和有效性。  相似文献   

7.
在对称电网故障下电网电压跌落程度和风速变化对双馈风电发电机(DFIG)的电磁暂态过程和其无功电流极限的影响规律分析基础上,分别讨论了故障持续期间DFIG定子侧以及网侧变流器的无功支撑特性,并结合并网风电场低电压穿越(LVRT)要求,提出了故障期间利用机组容量输出最大无功电流的DFIG改进控制策略,向电网提供最大暂态无功支撑。最后通过实验验证了所提改进控制策略的可行性。  相似文献   

8.
电网故障时,双馈式感应风电机组(DFIG)在机端电压深度跌落过程中表现出的电磁暂态特性十分复杂。计及撬棒保护的DFIG不对称短路特性研究较少,为了准确描述机端电压深度跌落过程中DFIG不对称短路电流变化特性,基于空间矢量和序分量法,建立了双馈感应电机的正、负序数学模型。在考虑双馈风电机组不同初始运行功率的情况下,通过数学解析的方法推导了撬棒保护电路投入后定转子正、负序磁链的计算表达式,在此基础上得到了定、转子电流的解析表达式。该方法同样适用于对称性故障时DFIG短路电流的解析计算。最后,通过Matlab/Simulink仿真软件验证了双馈风电机组机端发生对称和不对称电压跌落时定子电流解析计算表达式的准确性。  相似文献   

9.
目前关于双馈风电机组短路电流的研究主要基于传统磁链分析方法。提出一种计算双馈风电机组定转子三相短路电流的新方法。首先将发生三相对称短路的故障网络分解为无故障网络和故障附加网络,在此基础上,考虑机端电压相位跳变以及转子侧变流器调控的影响,从功能解耦的角度出发,进一步将故障附加网络分解为定子侧故障附加网络和转子侧故障附加网络。然后利用Laplace变换方法计算两组故障附加网络下的定转子短路电流增量,并推导全电流解析式。仿真及动模实验结果均验证了定转子短路电流表达式的正确性,对于含双馈风电机组的电力系统短路电流计算和继电保护整定意义重大。  相似文献   

10.
新能源常通过特高压交/直流输电系统送出,新能源汇集送端电网配套火电机组少,电网强度弱,直流闭锁或交流严重短路故障后的暂态过电压易引发风电脱网。该文基于典型电压穿越策略建立永磁直驱风机(permanent magnet synchronous generato rbased wind generator,PMSG)并网模型,研究弱电网中送出线路远端短路故障时的PMSG功率特性,揭示故障发生与清除时刻PMSG控制产生误差的原因,分析PMSG控制策略与参数对机组功率特性以及机端暂态过电压特性的影响。研究结果表明,远端短路故障清除时刻PMSG网侧电压相位一般向后跳变,由于锁相环存在时延,使暂态过程中锁相结果超前于实际相位,导致PMSG有功/无功控制不解耦,电流控制产生误差,由于锁相结果超前实际相位产生的控制误差会抑制网侧电压的快速抬升。  相似文献   

11.
在研究电网电压不对称对双馈感应发电机(DFIG)影响以及DFIG正、负序数学模型的基础上,分析了电网电压不对称条件下DFIG定子输出有功、无功功率和发电机电磁转矩的组成。针对电网电压不对称时负序电流对定子侧有功功率、无功功率、电磁转矩和直流侧电压的影响,提出电流正序分量跟踪控制策略,并在转子侧和网侧变换器的控制中对电网电压的正、负序分量分别处理。转子侧变流器采用正序电流跟踪的滞环控制,实现了电流的无差跟踪。网侧逆变器控制内环采用电流前馈控制,并控制负序电流为零,外环采用电压环稳定直流电压。仿真结果表明,在电网不对称故障时,这种控制策略可以消除负序电流对定子侧有功功率、无功功率、电磁转矩和直流侧电压的影响,实现不对称故障穿越。  相似文献   

12.
在研究电网电压不对称对双馈感应发电机( DFIG)影响以及DFIG正、负序数学模型的基础上,分析了电网电压不对称条件下DFIG定子输出有功、无功功率和发电机电磁转矩的组成.针对电网电压不对称时负序电流对定子侧有功功率、无功功率、电磁转矩和直流侧电压的影响,提出电流正序分量跟踪控制策略,并在转子侧和网侧变换器的控制中对电网电压的正、负序分量分别处理.转子侧变流器采用正序电流跟踪的滞环控制,实现了电流的无差跟踪.网侧逆变器控制内环采用电流前馈控制,并控制负序电流为零,外环采用电压环稳定直流电压,仿真结果表明,在电网不对称故障时,这种控制策略可以消除负序电流对定子侧有功功率、无功功率、电磁转矩和直流侧电压的影响,实现不对称故障穿越.  相似文献   

13.
采用串联网侧变换器的双馈风电系统高电压穿越控制策略   总被引:1,自引:0,他引:1  
针对采用串联网侧变换器的双馈风电系统电机定子端电压灵活可控的特点,提出了适用于该系统的对称高电压穿越控制策略。该策略通过控制串联网侧变换器,实现电网电压对称骤升时发电机定子电压保持不变,从而抑制定子磁链的暂态直流分量,使得电机转子过电压及过电流得到有效抑制,且可有效减小发电机电磁转矩及功率的波动。在变流器电流容量的约束下,故障期间通过控制转子侧变换器与并联网侧变换器吸收无功功率,可实现该系统对电网的故障暂态无功支持。仿真结果表明,所提控制策略既能保证在电网发生对称骤升故障期间双馈风电系统不脱网运行,又可使该系统为电网电压的恢复提供无功支持。  相似文献   

14.
双馈风电系统网侧变流器控制策略的改进   总被引:2,自引:2,他引:0       下载免费PDF全文
张克勤  钟鸣  王春宇 《电源学报》2013,11(1):112-116
在传统的矢量控制策略下,当电网电压发生三相对称短路故障时双馈感应发电机(DFIG)变流器直流母线电压会产生剧烈波动,从而影响整个风电系统的稳定运行。为此,需要对DFIG网侧变流器控制策略进行改进。分析了电网电压三相对称跌落时引起直流母线电压波动的原因,并在此基础上提出了新型的前馈控制方法。当电网电压跌落时对网侧变流器电流参考值做必要修正,从而达到减小直流母线电压波动的目的。为了验证该控制方法的有效性,在PSCAD/EMTDC软件环境下建立了容量为2MW的DFIG风电系统模型,并在此模型下进行系统仿真。仿真结果显示,提出的前馈控制策略能够有效的减小直流母线电压的波动。  相似文献   

15.
风电并网系统交流短路时,锁相环(PLL)锁相误差导致风机功率耦合,在故障清除时产生暂态过电压,亟须开展计及锁相误差的暂态过电压机理、特性与抑制策略的研究。首先,分析PLL参数、故障位置及故障类型对暂态过电压的影响。然后,以三相故障为例揭示了相位跳变的特征及锁相误差引起暂态过电压的机理,提出基于改进型PLL结构与锁相误差补偿的转子侧变流器、定子侧变流器控制策略,实现对双馈风电机组(DFIG)暂态过电压的主动抑制。最后,仿真验证了所提策略在实现DFIG故障穿越的同时还能够进一步抑制暂态过电压。  相似文献   

16.
由于定子直接连接到电网,电网电压中的负序和谐波分量会严重恶化双馈风力发电机(DFIG)系统的运行性能,导致系统输出总电流三相不对称及谐波畸变、总输出有功功率及无功功率波动等,使得DFIG系统无法安全稳定可靠运行,且输出风电质量下降。同时考虑负序和谐波电网下DFIG系统机侧变流器和网侧变流器的运行状态,以改善DFIG系统总输出电流或功率质量为目标,研究基于二阶矢量积分器(SOVI)的DFIG系统网侧和机侧变流器改进直接功率控制(DPC)策略,改善DFIG系统的运行性能。实验结果验证了所提出的负序和谐波畸变电网电压下DPC策略的正确性及有效性。  相似文献   

17.
双馈风机(DFIG)的接入会影响配电网继电保护的正确动作,其中控制策略的影响不可忽视。基于DFIG两相静止坐标系下的数学模型,分别建立了DFIG机侧变流器的矢量控制和直接功率控制的模型。理论分析表明当电网发生短路故障时,不同控制策略下的DFIG短路特性有着较大差异,从而对继电保护造成不利影响。从仿真结果可知,直接功率控制响应速度快,超调量大;矢量控制响应速度慢,超调量小;DFIG出口处电压下降越多,两种控制方式瞬间提供的短路电流差别越大。最后采用向转子电流参考指令中加补偿项的方法对机侧变流器矢量控制进行改进。仿真分析结果验证了改进后的矢量控制能有效地减少DFIG在故障期间对继电保护的不利影响。  相似文献   

18.
采用串联网侧变换器的DFIG风电系统低电压穿越控制   总被引:2,自引:0,他引:2  
双馈感应发电机(DFIG)因其对电网故障的敏感性,其低电压穿越运行控制技术备受关注.文中针对定子侧加装串联网侧变换器的新型DFIG风电系统,详细研究了其低电压穿越运行特性,提出了一种适用于新拓扑下发电系统的运行控制方案:通过控制串联网侧变换器抑制定子磁链暂态直流分量及电网电压负序分量对发电机转子侧的不良影响;通过控制转子侧变换器进一步限制故障时发电机的定、转子电流,从而实现发电系统的低电压穿越运行.仿真结果表明:采用所提出的控制方案,可实现电网故障时DFIG风电系统的零电压穿越运行;采用新拓扑的DFIG风电系统具有优良的电网对称及非对称短路故障穿越能力.  相似文献   

19.
基于双馈感应发电机(DFIG)风力发电系统模型,通过分析电网电压跌落情况下的各种运行状况,提出在电网严重故障期间,采用Active Crowbar电路和直流侧卸荷电路保护变流器和避免直流侧电压过压。在电网故障恢复期间,Crowbar电路的再次投入使得系统无功需求增大。并在网侧变流器的功率容量范围内,提出一种网侧变流器无功功率的控制策略来实现对电网无功支持,以助于电网故障恢复以及加快机端电压恢复。基于PSCAD/EMTDC平台建立了仿真系统模型并验证了该控制策略的有效性。该控制策略满足了风电机组并网的低电压穿越,有效提高了DFIG风电机组运行的可靠性。  相似文献   

20.
电网短路时双馈感应发电机转子电流的分析与计算   总被引:6,自引:0,他引:6  
双馈风电机组对机端电压跌落比较敏感,随着风电装机容量的不断增加,电网故障时双馈风电机组转子电流的准确分析与评估变得十分重要,关系着双馈风电机组低电压穿越的实现以及故障电气量的分析与计算。从电网短路时双馈感应发电机的暂态过程出发,分析了双馈感应发电机定子动态过程以及变流器调控对转子电流的影响,采用空间矢量法和坐标变换方法推导了电网对称短路和不对称短路时转子电流的表达式,通过时域仿真和算例结果验证了表达式的正确性。所提出的表达式利用机端电压以及变流器控制参数即可计算得到电网短路时任意时刻的转子电流,具有清晰的物理意义以及较好的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号