首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
针对使用背靠背全功率变流器的永磁直驱风电系统,提出采用在风电机组直流侧添加卸荷支路的方法提高机组的低电压穿越能力。文中对直驱永磁同步风力发电系统的暂态进行了分析,重点分析当电网发生故障,电网电压跌落时机组的暂态行为。在PSCAD/EMTDC仿真软件上搭建带有卸荷支路的直驱永磁同步风力发电系统的并网模型,并给出主要控制策略和主要仿真参数。仿真结果显示,卸荷支路在机组并网点电压跌落时,能够很好的平衡系统功率,维持直流母线电压恒定,起到机组与电网故障相隔离的作用。保证了机组不与电网发生解列、继续向电网注入功率,从而很好的提高了风电机组的低电压穿越能力。  相似文献   

2.
直驱式VSCF风电系统直流侧Crowbar电路的仿真分析   总被引:10,自引:0,他引:10  
为提高直驱式变速恒频风电系统的故障穿越能力,采用直流侧过压保护(crowbar)电路,使电网电压跌落时风力机能够保持正常运行,故障消除后系统快速恢复至额定输出。基于对几种常用直流侧crowbar方案的分析比较,选择卸荷负载作为crowbar电路,对网侧变换器和卸荷负载的控制原理及其配合进行了详细说明,对采用和不采用crowbar电路时变换器的跌落特性进行了仿真分析和对比。仿真结果显示采用卸荷负载控制简单,容易实现与网侧变换器的配合,可有效增强直驱式风电系统的低电压穿越能力。  相似文献   

3.
为了提高采用双PWM变流器的永磁直驱风电系统的低电压穿越能力,提出了增加直流侧卸荷负载以及电网侧采用静止同步无功补偿器的方法,在MATLAB/SIMULINK仿真环境中建立了系统的仿真模型并针对系统的跌落特性进行了动态仿真.仿真结果表明:系统能够实现最大功率点追踪以及向电网输出接近正弦的优良交流电能;在电网电压跌落时,卸荷负载能够消耗掉多余的能量并且能良好地限制直流侧电压上升,STATCOM能够快速为电网提供无功功率支持.  相似文献   

4.
直驱风机低电压穿越控制技术研究及实测验证   总被引:2,自引:0,他引:2  
随着风电大规模接入电网,新的并网规范要求风力发电机组必须具有低电压穿越能力.针对直驱式风电机组,采用直流母线卸荷电阻限制电压跌落时变流器直流环节产生的过电压,并通过改进电流控制策略抑制变流器过电流,从而实现永磁同步发电机风电机组的低电压穿越运行.在网侧变流器数学模型的基础上进行了卸荷电阻的优化设计,提出了电网电压跌落故障时网侧变流器的改进电流控制策略,最后在1.5 MW级永磁同步发电机风电机组上进行现场低电压穿越能力测试,实测验证了所提出方法的正确性.  相似文献   

5.
电网导则要求风电机组在电网电压跌落时要保证在一定范围内不脱网运行。针对背靠背的永磁直驱风电系统,分析了双PWM变流器的网侧控制策略,并设计直流侧卸荷电阻式Crowbar电路的硬件电路和控制策略,在此基础上对电网3种典型的电压跌落故障进行了仿真分析。结果表明,直流侧卸荷电阻式Crowbar电路的投入能够使风电机组在不同类型的电压跌落故障时保持不脱网运行,并使发电系统的恢复更加迅速,控制简单,成本低,能够保障变流器稳定安全的运行,有效提高永磁直驱风力电系统的低电压过渡能力。  相似文献   

6.
永磁直驱风电系统低电压运行特性的分析   总被引:6,自引:1,他引:6  
通过构建永磁直驱风电系统的仿真模型,实现网侧变换器输出有功和无功功率的解耦控制,增加卸荷负载以提高其应对电压跌落等故障的穿越能力,对风电系统运行在单位功率因数、超前和滞后功率因数情况下的跌落特性进行了仿真分析,讨论了电压跌落期间风电系统对电网的无功支持.仿真结果表明,直驱式永磁同步电机风电系统具有较强的低电压穿越能力,可以安全运行在不同功率因数下,同时能在电网电压故障期间对系统提供一定的无功支持.  相似文献   

7.
为提高直驱式变速恒频风电系统的故障穿越能力,采用直流侧过压保护Crowbar电路,使电网电压跌落时风机能够正常运行,故障消除后系统能快速恢复至额定输出。在电压跌落期间,控制网侧变流器发出无功功率,即运行STATCOM模式,快速向电网提供无功功率,稳定电网电压,帮助电网电压快速恢复。据此提出基于Crowbar卸荷电路和STATCOM运行策略的直驱风力发电系统的低电压穿越(LVRT)方案,并进行了实验验证。  相似文献   

8.
随着风电穿透功率的增大,在电网电压跌落时切除风电机组的传统控制策略已经不能满足电网安全稳定的要求,因此新的电网规则要求风力发电机组必须具有低电压穿越能力。文中介绍了几种直驱型风电系统常用的直流侧crowbar电路,通过比较,选择直流侧使用卸荷电阻的crowbar电路,并与网侧逆变器配合,实现直驱型风电系统的低电压穿越。仿真结果表明,采用卸荷电阻并配合网侧逆变器控制,可以有效提高直驱型风电系统的低电压穿越能力。  相似文献   

9.
为避免电网电压跌落导致海上风电机组脱网运行,分析了直驱永磁同步海上风电系统的双PWM全功率变流器控制策略,提出了一种基于超级电容器蓄能的海上风电机组并网运行低电压穿越方案。在双向变流器的直流侧并联超级电容蓄能系统,利用超级电容来维持电网故障时的功率平衡,稳定直流侧母线电压。利用网侧变流器静止无功补偿运行模式控制无功电流输出,向电网提供无功功率支持。仿真结果表明了该方案在电网故障时,能有效抑制直流侧过电压,向电网提供无功功率,有利于电网故障恢复,提高了直驱永磁海上风电系统的低电压穿越能力。  相似文献   

10.
永磁直驱风电机组低电压穿越时的有功和无功协调控制   总被引:5,自引:0,他引:5  
为提高基于全功率变流器并网的永磁直驱风电机组低电压穿越能力,在深入研究该风电机组运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种采用机侧变流器控制直流电压稳定,网侧变流器实现最大功率跟踪和有功无功协调的新型控制策略。在低电压穿越过程中,该控制策略根据变流器直流侧电压的变化,通过机侧变流器调节风力发电机的电磁功率,使电网故障期间风电机组的功率波动由发电机转子承担,消除全功率变流器两端的功率不平衡,稳定直流侧电压。并根据电网电压幅值,通过网侧变流器实现对风电机组输出有功和无功的协调控制,抑制电网电压扰动。仿真结果表明本文所提控制策略在电网电压扰动时能有效抑制直流侧电压波动,使永磁直驱风电机组的低电压穿越能力得到显著提高,并能有效实现对电网电压的支持。  相似文献   

11.
全功率变流器永磁直驱风电系统低电压穿越特性研究   总被引:28,自引:4,他引:24  
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的运行变得尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行。针对使用背靠背全功率变流器的永磁直驱风电系统,提出一种在电网电压瞬间跌落情况下不脱网运行的方法。电网发生电压瞬间跌落时,网侧变流器运行在静止无功补偿(STATCOM)模式,依据电网电压跌落的深度决定发出无功电流的大小,通过快速提供无功电流来稳定电网电压,实现直驱型风电系统的低电压穿越功能。仿真和实验结果表明电网电压故障时使直驱风电系统运行在STATCOM模式可以有效提高低电压穿越能力。  相似文献   

12.
超导储能在并网直驱风电系统中的应用研究   总被引:1,自引:1,他引:1       下载免费PDF全文
针对直驱风电系统并网运行过程中存在的输出有功功率波动和低电压穿越问题,在变换器的直流环节并联超导储能系统。对超导储能系统的斩波器提出双闭环加脉冲判断的控制策略,确保超导磁体线圈电流水平,使超导储能系统可以快速、准确地充放电,从而稳定直流环节功率。同时,通过引入谐振控制器的方法,对网侧变换器的控制策略进行改进,实现电网电压不对称跌落情况下,负序分量引起波动的有效控制。仿真结果表明,采用上述方案后直驱风电系统向电网输送较为平滑的有功功率、低电压穿越能力得到了提升。  相似文献   

13.
双馈风电机组低电压穿越特性的试验研究   总被引:4,自引:1,他引:3  
低电压穿越能力正逐渐成为大型并网风电机组的必备功能之一,要求风电机组在电网电压跌落发生时保持并网,故障消除后快速恢复正常运行。在分析双馈机组电压跌落特性的基础上,采用了转子主动式Crowbar电路和直流侧卸荷电路相结合的方法来实现双馈风电机组的低电压穿越功能,讨论了具体的低电压穿越控制策略,通过仿真验证了电路结构和控制策略的正确性。在实验室10 kW双馈机组实验平台上,采用电压跌落发生器模拟电网电压跌落故障,进行了电网电压跌落至额定电压20%时不同持续时间的测试,证实了所采用的低电压穿越控制策略的有效性。  相似文献   

14.
通过发电机控制绕组侧的励磁变换器灵活调节系统所需的励磁无功功率,定子双绕组感应电机(DWIG)风力发电系统可在宽风速范围内输出稳定的高压直流,无需增加升压变换器即可并网运行,并且系统的控制策略有助于提高系统对电压跌落等故障的穿越能力。文中通过构建并网型DWIG风力发电系统的Simulink仿真模型,对系统运行在各种功率因数状态下的跌落特性及跌落期间对电网的无功功率支持进行全面仿真。结果证明,无需增加额外的卸载单元,DWIG风力发电系统即可实现较强的低电压穿越能力,在不同功率因数下均能稳定安全运行,且能在电压跌落故障期间提供一定的无功功率支持。  相似文献   

15.
针对Boost升压型永磁直驱型风电系统,分析了其发电机侧和网侧变流器的控制策略.为增强其低电压穿越能力,提出了一种基于转子储能和网侧无功优先输出的控制策略.通过减小发电机的有功输出来降低直流侧过电压,通过控制网侧无功输出来提升电网电压.基于Matlab/Simulink 7.10搭建了仿真模型.仿真结果证明了该控制策略的有效性.  相似文献   

16.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

17.
为提高永磁直驱型风力发电机组的高电压穿越能力,在研究电网电压骤升下风力发电机组运行特性基础上提出一种基于双模控制的永磁直驱型风力发电机组高电压穿越控制策略。以电网电压骤升幅度及直流母线电压的升高程度为依据,利用选择器进行网侧变流器控制模式的转换,从而使直驱型风力发电机组具备高电压穿越能力。基于PSCAD仿真平台的仿真结果及应用结果表明,该控制策略不仅可以保证直驱型风力发电机组在电网电压骤升期间不脱网连续运行,还可以有效提高风力发电机组的无功补偿能力,有利于电网的安全稳定运行。  相似文献   

18.
无刷双馈感应发电机(BDFIG)由于其良好的维护特性,在风力发电中具有良好的应用前景。作为大功率并网发电装置,基于BDFIG的风电系统需要满足电网的低电压穿越(LVRT)并网导则。双馈型风电系统机侧变流器的极限控制能力决定了系统LVRT的控制方案与控制成本,具有重要的实际意义。文中详细分析了BDFIG在电网故障时的瞬态模型,通过引入庞特里亚金极小值算法分析基于BDFIG的风电系统的机侧变流器控制端电压最优值,得到整个系统LVRT极限控制范围,并进一步与普通双馈感应发电机进行了比较。结果表明,BDFIG具有更加优异的LVRT能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号