首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
在对称电网故障下电网电压跌落程度和风速变化对双馈风电发电机(DFIG)的电磁暂态过程和其无功电流极限的影响规律分析基础上,分别讨论了故障持续期间DFIG定子侧以及网侧变流器的无功支撑特性,并结合并网风电场低电压穿越(LVRT)要求,提出了故障期间利用机组容量输出最大无功电流的DFIG改进控制策略,向电网提供最大暂态无功支撑。最后通过实验验证了所提改进控制策略的可行性。  相似文献   

2.
为提高双馈感应发电机(DFIG)低电压穿越(LVRT)能力的同时满足电网无功支撑需求,对传统矢量控制策略进行改进,设计了无功协调控制模块。重点研究Crowbar切除时DFIG的低电压穿越问题,充分利用此时DFIG无功调控能力,为确保双馈风机在电网故障较严重时仍满足电网无功需求,配置静止同步补偿器(STATCOM)作为额外无功辅助设备。最后,在PSCAD/EMTDC平台搭建1.5MW并网DFIG仿真模型,在电网电压跌落时,对控制策略改进前后运行结果的分析表明,所提控制策略能更好地发挥DFIG无功支撑能力,减少STATCOM利用率,实现风电场的低电压穿越。  相似文献   

3.
双馈风电机组低电压穿越的无功电流分配及控制策略改进   总被引:1,自引:0,他引:1  
为满足风电机组低电压穿越(low voltage ride through,LVRT)的测试要求及其电气模型一致性评估需要,提出考虑向电网注入无功电流的双馈风电机组LVRT的控制策略。在阐述风电机组LVRT测试要求及控制原理的基础上,推导双馈发电机(doubly fed induction generator,DFIG)定子侧及网侧变流器输出无功电流极限表达式,研究电网电压跌落深度和发电机总输出有功功率对其无功电流极限值的影响规律,进而提出DFIG在LVRT期间的无功电流分配算法和改进的有功、无功功率控制策略。最后,以某实际2 MW双馈风电机组为例,分别对风速为5和12 m/s、电网电压对称跌落至20%和50%工况下的LVRT运行性能进行仿真比较和样机测试。与传统LVRT控制方法的对比表明,所提改进控制策略能更好地满足风电机组LVRT的测试要求。样机测试结果进一步证明了改进控制策略和仿真模型的有效性。  相似文献   

4.
双馈(DFIG)风电机组低电压穿越(LVRT)是风电厂并网运行的重要条件,提出了一种集成Crowbar硬件电路与网侧变流器不对称加强控制的LVRT综合控制策略。该策略中Crowbar优化投切判据根据电网故障类型自动判断投入切出时间,具有更强的灵活性及适用性;网侧变流器(GSC)在改进不对称预测电流控制的基础上增加了无功输出补偿控制,具有控制模型精确、控制效果好、具备无功支撑能力的特点。采用RTDS(实时数字仿真器)和自主开发的DSP控制器,开发了DFIG风电机组LVRT的数字/物理混合实时仿真系统,并对一台2MW风电机组进行了电网三相短路与两相短路下的LVRT数字/物理混合实时仿真,验证了所提综合策略的正确性和混合仿真方案的有效性。  相似文献   

5.
双馈(DFIG)风电机组低电压穿越(LVRT)是风电厂并网运行的重要条件,提出了一种集成Crowbar硬件电路与网侧变流器不对称加强控制的LVRT综合控制策略。该策略中Crowbar优化投切判据根据电网故障类型自动判断投入切出时间,具有更强的灵活性及适用性;网侧变流器(GSC)在改进不对称预测电流控制的基础上增加了无功输出补偿控制,具有控制模型精确、控制效果好、具备无功支撑能力的特点。采用RTDS(实时数字仿真器)和自主开发的DSP控制器,开发了DFIG风电机组LVRT的数字/物理混合实时仿真系统,并对一台2 MW风电机组进行了电网三相短路与两相短路下的LVRT数字/物理混合实时仿真,验证了所提综合策略的正确性和混合仿真方案的有效性。  相似文献   

6.
针对双馈感应风力发电机组(DFIG)的低电压穿越(LVRT)问题,在分析现有转子串电阻电路基础上,考虑限流电阻阻值对低电压穿越期间DFIG瞬态性能的影响,权衡转子电流、转子电压、无功功率、电磁转矩间的关系,对限流电阻阻值的选取原则进行了优化; 转子串电阻电路退出但电网电压未恢复时转子侧变流器的功率协调控制策略得到改善; 在此基础上,利用变流器对DFIG的控制灵活性,提出一种无需定子磁链观测且控制算法简单的换流器改进控制策略。本文所提的LVRT优化控制策略在提高DFIG瞬态性能的同时兼顾了系统暂态稳定性  相似文献   

7.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though, LVRT)。  相似文献   

8.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though,LVRT)。  相似文献   

9.
随着风电场低电压穿越(low voltage ride though, LVRT)要求的提出,传统Crowbar技术的弊端显现出来,故障时转子侧变流器被短接,发电机定子侧失去为电网提供无功的能力。提出一种改进的双馈风力发电机组(doubly-fed induction generator, DFIG)模型,使用DC-Chopper,串联动态制动电阻(series dynamic braking resistor, SDBR)代替Crowbar,在故障时能够控制直流母线电压,抑制转子侧过电流,起到保护直流侧电容和转子侧变流器的作用。由于转子侧变流器不退出运行,所以在控制策略上提出了通过控制转子侧变流器来实现发电机定子侧在故障期间向电网提供部分无功支持,同时网侧变流器采用变功率因数控制,在故障情况下给电网提供主要的无功支持,实现低电压穿越。  相似文献   

10.
提出一种基于串联动态制动电阻(SDBR)的低电压主动保护方法,在电网故障时吸收由于电网电压跌落引起的不平衡功率,保证故障期间双馈风电机组不脱网运行。分析SDBR对DFIG的暂态影响,提出SDBR的投切控制策略。根据低电压穿越(LVRT)规范对无功功率的要求,研究转子侧变流器无功补偿控制方式。利用PSCAD/EMTDC仿真平台,建立基于SDBR的双馈风电系统仿真模型,对三相对称故障时DFIG的低电压穿越能力进行仿真研究。仿真结果表明,串联动态制动电阻能够有效的抑制定、转子过电流,限制直流母线过电压,从而提高DFIG的低电压穿越能力,保证风电系统的不脱网运行。  相似文献   

11.
基于主动式IGBT型Crowbar的双馈风力发电系统LVRT仿真研究   总被引:3,自引:0,他引:3  
讨论了电网电压骤降下双馈感应风电(DFIG)系统的低压穿越控制策略和保护方案.在分析主动式IGBT型Crowbar电路的拓扑结构以及电网电压跌落时Crowbar电路作用的基础上,采用计及电网电压变化的DFIG数学模型,建立了LVRT控制模型.通过仿真详细研究了Crowbar投切策略,仿真结果验证了Crowbar电路以及控制策略的有效性,表明Crowbar电路能有效抑制转子过电流、直流母线过电压以及电磁转矩的振荡,并可在故障时向电网注入无功电流以帮助电网电压的恢复,使DFIG实现低电压穿越.  相似文献   

12.
讨论了电网电压骤降下双馈感应风电(DFIG)系统的低压穿越控制策略和保护方案。采用计及电网电压变化的DFIG数学模型,建立了LVRT控制模型,通过仿真详细研究了Crowbar投切策略,仿真结果验证了Crowbar电路以及控制策略的有效性,表明Crowbar电路能有效抑制转子过电流、直流母线过电压以及电磁转矩的振荡,并可在故障时向电网注入无功电流以帮助电网电压的恢复,使DFIG实现低电压穿越。测量结果表明了这种控制方式能使DFIG在电压跌落故障下实现不间断运行,有效提高了DFIG风电机组运行的可靠性。  相似文献   

13.
王鹏  李方媛  胡阳  郭浩  朱琳 《电机与控制应用》2021,48(2):64-70,75
针对传统双馈风电机组(DFIG)低电压穿越(LVRT)能力不足问题,提出了储能型双馈风电场联合STATCOM的无功协调控制。该控制是在网侧变流器(GSC)原有的模型上将超级电容经隔离型DC/DC变换器并联到风机直流侧,以此吸收故障期间直流侧产生的不平衡功率;在发生低电压故障时,根据超级电容投入情况,对两侧变流器和并联在风机出口母线上的STATCOM进行无功协调控制来支撑电网电压;同时超级电容储能装置采用电压电流双闭环控制,满足了系统稳定性和经济性的要求。仿真结果表明:该方法应用在风电并网系统中可以使DFIG的LVRT能力得到极大的提升。  相似文献   

14.
讨论了电网电压骤降下双馈感应风电(DFIG)系统的低压穿越控制策略和保护方案。在分析主动式IGBT型Crowbar电路的拓扑结构以及电网电压跌落时Crowbar电路作用的基础上,采用计及电网电压变化的DFIG数学模型,建立了LVRT控制模型。通过仿真详细研究了Crowbar投切策略,仿真结果验证了Crowbar电路以及控制策略的有效性,表明Crowbar电路能有效抑制转子过电流、直流母线过电压以及电磁转矩的振荡,并可在故障时向电网注入无功电流以帮助电网电压的恢复,使DFIG实现低电压穿越。  相似文献   

15.
为了优化电网电压发生不对称故障时双馈风力发电机(doubly fed induction generator,DFIG)的低电压穿越(low voltage ride through,LVRT)能力,提出一种优化方法,即在转子侧串联电阻和电容改善DFIG的LVRT能力。传统的Crowbar方法中,故障期间DFIG将产生不可控的情形并且吸收一定无功,不利于电网电压恢复。而采用转子串阻容方法,限制了转子侧电压的负序分量和直流分量,抑制了转子开路电压和转子过电流,保证了DFIG在故障期间可控状态,并提供无功,有利于电网电压的恢复。仿真结果表明,所提方法能使DFIG成功进行低电压穿越,保证了DFIG在故障期间可控。  相似文献   

16.
基于双馈感应发电机(DFIG)风力发电系统模型,通过分析电网电压跌落情况下的各种运行状况,提出在电网严重故障期间,采用Active Crowbar电路和直流侧卸荷电路保护变流器和避免直流侧电压过压。在电网故障恢复期间,Crowbar电路的再次投入使得系统无功需求增大。并在网侧变流器的功率容量范围内,提出一种网侧变流器无功功率的控制策略来实现对电网无功支持,以助于电网故障恢复以及加快机端电压恢复。基于PSCAD/EMTDC平台建立了仿真系统模型并验证了该控制策略的有效性。该控制策略满足了风电机组并网的低电压穿越,有效提高了DFIG风电机组运行的可靠性。  相似文献   

17.
目前双馈感应风电机组(DFIG)主要通过配备主动式Crowbar保护来实现低电压穿越(LVRT),由于电网扰动将打破风电机组原有的转矩平衡条件,由此可能导致风电机组转子加速至超速保护动作值,触发超速保护动作,致使风电机组发生超速脱网,无法实现故障穿越。本文分析了dq坐标系下DFIG的数学模型和功率解耦控制原理,基于PSCAD/EMTDC仿真平台搭建的DFIG联网仿真系统,仿真分析了因转矩失衡导致机组超速脱网的LVRT失败过程,表明机电暂态过程对机组LVRT有重要影响。继而提出一种故障期间重启转子变流器、恢复机组功率控制的改进LVRT控制策略,仿真结果表明了改进控制策略的有效性。  相似文献   

18.
为了改善2 MW二极管中点箝位式双三电平变流器直驱式永磁同步风力机组(PMSG)的低电压穿越(LVRT)性能,提出了新的稳态时单位功率因数控制、电网暂态故障时无功优先、有功受限复合控制策略。采用定量模拟的方法,对电网电压深度跌落时采用卸荷电路和改进控制策略实现风电机组低电压穿越进行了仿真研究。结合现场运行数据对内蒙古某风场永磁直驱式风电机组主要参数进行了数据处理和分析,并依据最新的风电场接入电力系统技术规定标准对该机组进行了低电压穿越现场测试。结果表明,卸荷电路和改进无功优先控制方式均可实现直驱式风电系统的低电压穿越运行,有功、无功的动态解耦和直流母线电压稳定控制,向电网发出友好型清洁电能。后者可向电网提供360 k VA的稳定无功支持,更有利于辅助电网电压的恢复和提升机组的低电压穿越能力。  相似文献   

19.
传统基于Crowbar的低电压穿越(LVRT)解决方案不仅没有充分利用变流器对双馈感应发电机(DFIG)的控制灵活性,而且也难以较好地适应当今不断提升的并网要求。而当前非对称电网故障下的暂态补偿控制策略也缺乏相应的实验验证。鉴于此,文中对电网电压发生跌落故障时定、转子电磁暂态过程进行了深入分析和讨论,并针对非对称故障时转子端过电压主要由定子磁链直流分量和负序分量引起这一现象,研究了一种有效的LVRT控制策略。该策略通过在DFIG转子侧适时准确地分别注入与磁链直流分量和负序分量相对应的暂态补偿量,最大限度地减小暂态转子电压冲击,提高DFIG的暂态可控性,拓展可穿越的电压故障范围,进而改善双馈风电机组的LVRT性能。11kW模拟机组的实验验证了所述分析和设计。  相似文献   

20.
双馈风机DFIG(doubly-fed induction generator)的低电压穿越能力LVRT(low voltage ride through)正逐渐成为大型风电场必备的功能之一。为了使带有Crowbar保护电路的DFIG在电网故障阶段发出一定的无功支持电网电压的恢复,充分利用变频器的无功产生能力,在电压跌落期间,给定网侧变频器一无功指令值,并使用无功电流优先的原则进行控制。为了减少投资,增强DFIG的无功发出能力,把机侧和网侧变频器并联向系统发无功,并增大直流侧电容来增强系统的稳定性。仿真结果表明,网侧和机侧变频器都可以对电网进行无功支撑,提升了机端电压,增强了双馈风机的低电压穿越能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号