首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
针对规程法计算输电线路绕击跳闸率误差较大的问题,采用了蒙特卡罗法计算绕击跳闸率,对雷电流幅值、先导对地面和导线的击距、地面倾角、绝缘子串50%放电电压等参数进行了分析,基于电气几何模型(Electric-Geometry Model,EGM),选用实际运行的兰州东-平凉-乾县750kV超高压输电线路计算绕击跳闸率,并分析了导线高度对绕击跳闸率的影响.结果表明:蒙特卡罗法计算的绕击跳闸率可信度较高,并且导线高度对绕击跳闸率影响较大.  相似文献   

2.
基于EGM的500 kV同杆双回线路绕击跳闸率研究   总被引:1,自引:0,他引:1  
采用EGM进行500 kV 同杆双回输电线路绕击跳闸率的计算。在计算中, 引入了随杆塔高度h 变化的击距系数β, 以暴露弧为0 时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对各导线绕击跳闸率的影响。计算结果表明, 随着地面倾角增大, 绕击跳闸率先增大后减小; 绕击跳闸率随避雷线横担增长而减小; 各导线绕击跳闸率与杆塔结构的关系复杂, 应分别计算分析, 而不宜仅仅求得总绕击跳闸率, 这样可以对绕击跳闸率较高的导线加强绝缘, 以提高线路的耐雷水平。  相似文献   

3.
基于改进电气几何模型的绕击跳闸率的计算   总被引:21,自引:7,他引:21  
讨论了经典的电气几何模型(EGM),在此基础上提出了3点改进建议。计算中采用IEEE推荐的击距公式,引入系数ksg描述雷击地线和雷击地面击穿强度的不同,用暴露距离计算雷电绕击率和绕击跳闸率。分析了ksg取值对计算结果的影响。利用改进的计算方法、分别计算了地面倾角、避雷线保护角和环境温度对线路绕击跳闸率的影响。结果表明,当ksg减小、地面倾角增大、避雷线保护角增大、温度降低时,绕击跳闸率增大。  相似文献   

4.
±660 kV高压直流输电线路是世界上首条该电压等级的线路,对其耐雷性能研究至关重要。已有研究表明改进的EGM是所有计算线路绕击跳闸率模型中较为精确的模型。利用改进的EGM,考虑雷电对导线、地线和大地三者击距的差异、风偏影响、地形影响和导线工作电压影响等,基于典型杆塔对我国±660 kV高压直流输电线路进行绕击性能分析。仿真结果表明,在相同地面倾角时,考虑导线工作电压的绕击跳闸率大约是不考虑导线工作电压的2倍,因此计算中必须考虑导线工作电压。随着风速和地面倾角的增大,绕击跳闸率呈加速度增长。当地面倾角大于20°,风速大于20 m/s时,杆塔为ZP2711的线路绕击跳闸率超过指标要求0.1次/100 km.a,因此ZP2711杆塔适用于在内陆平原地区使用。而JP2711杆塔在地面倾角小于30°,风速小于30 m/s时绕击跳闸率都达标,因此可以在沿海以及山区地带选用。  相似文献   

5.
利用地形参数计算超高压输电线路绕击跳闸率   总被引:8,自引:2,他引:6  
目前雷击仍然是危及输电线路安全可靠运行的主要原因,而超高压输电线路雷击跳闸主要原因是绕击。基于击距理论的电气几何模型在输电线路绕击性能评估中得到了广泛的应用,该模型认为绕击率与导线高度、地面倾角等因数有关,但是输电线路实际地面倾角的获取非常困难。为此,提出了一种利用Google Earth软件来计算地面倾角的方法。首先根据输电线路杆塔经纬度坐标计算位于垂直于输电线路走廊方向上点的经纬度坐标,通过Path Editor工具调用Google Earth软件获得各点的海拔高度;然后根据各点与杆塔所在位置的高差和距离,计算杆塔地面倾角;最后以某500 kV输电线路为例,利用改进的电气几何模型,研究实际地面倾角下整条输电线路的绕击跳闸率。研究表明:输电线路两侧绕击跳闸率差别较大,建议评估输电线路绕击性能时对输电走廊两侧地形的差异加以考虑;计算结果与实际发生过的雷击情况吻合,为差异化的防雷打下了基础。  相似文献   

6.
击距系数的实验研究与理论分析   总被引:5,自引:2,他引:3  
针对经典电气几何模型认为雷电先导对导线、避雷线、大地三者之间击距相等的不合理问题,提出了用击距系数来描述雷电先导对导线与大地击穿强度的差别;依据长间隙放电与雷击放电的相似性,开展了棒-板间隙实验以得到击中目的物概率为50%时雷电先导与地面、导线之间的位置关系。实验结果显示击距系数随线路高度的增加而减小,实验结果修正之后得到击距系数与线路高度之间的关系,并依据电磁场理论的知识推得雷电先导击中地面的临界场强为500kV/m;导线的临界击穿强度随线路高度变化满足一定关系时,计算分析所得的击距系数与实验所得的非常接近。实验所得的击距系数公式可用于线路绕击防雷计算中。  相似文献   

7.
500 kV高杆塔输电线路绕击跳闸率计算   总被引:1,自引:0,他引:1  
为研究500 kV高杆塔输电线路的绕击耐雷性能,采用改进的电气几何模型算法,通过暴露弧地面投影计算了线路的绕击跳闸率.比较了目前常用的击距公式和击距系数公式在计算高杆塔绕击耐雷水平时的适用性,选出了较为合适的公式.实例分析时,通过ATP仿真计算得到了各杆塔的绕击耐雷水平,然后分别计算了杆塔高度,地面倾角,避雷线保护角对线路绕击跳闸率的影响,结果表明:绕击跳闸率随着杆塔高度,地面倾角,保护角的增大而增大.适当降低杆塔高度,采用负保护角是提高绕击耐雷性能的有效方法.  相似文献   

8.
分析了500 kV/220 kV同塔四回输电线路的绕击耐雷性能,采用电气几何模型法EGM来计算绕击跳闸率。采用暴露弧法计算每根导线绕击跳闸率,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对500 kV/220 kV同塔四回输电线路绕击跳闸率的影响。结果表明,雷电绕击多发生在500kV线路上;随着地面倾角增大,绕击跳闸率增大;绕击跳闸率随避雷线横担长度增长而减小,但对220 kV线路影响不大。通过详细分析和计算,对塔型设计方案进行了验证、比较。  相似文献   

9.
王磊  肖山 《吉林电力》2010,38(1):26-29
分析了500kV/220kV同塔四回输电线路的绕击耐雷性能,采用电气几何模型法EGM来计算绕击跳闸率。采用暴露弧法计算每根导线绕击跳闸率,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对500kV/220kV同塔四回输电线路绕击跳闸率的影响。结果表明,雷电绕击多发生在500kV线路上;随着地面倾角增大,绕击跳闸率增大;绕击跳闸率随避雷线横担长度增长而减小,但对220kV线路影响不大。通过详细分析和计算,对塔型设计方案进行了验证、比较。  相似文献   

10.
根据雷击现象随机性大的特点,选用蒙特卡罗法并结合电气几何模型对500 kV同杆双回线路的绕击跳闸率进行计算。在计算中,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对各导线绕击跳闸率的影响。计算结果表明,随着地面倾角增大,绕击跳闸率先增大后减小;绕击跳闸率随避雷线横担增长而减小;对同杆双回输电线路,应分别计算各导线的绕击跳闸率,而不宜仅仅求得总绕击跳闸率。这样可以对绕击跳闸率较高的导线加强绝缘,以提高线路的耐雷水平。  相似文献   

11.
500kV同塔4回输电线路绕击的耐雷性能   总被引:5,自引:2,他引:3  
为研究同塔4回输电线路绕击耐雷性能,采用改进电气几何模型对其进行了分析。同塔4回输电线路导线数目多,避雷线需同时保护多相导线,因此必须通过确定雷电绕击的范围以得到绕击计算时所需的击距系数k、临界击距rsc、最大击距rsmax、年落雷次数N和雷击击距为r的概率等基本条件。在实际分析验证典型塔型的基础上建立了计算模型,改变相应参数得出绕击跳闸率n与杆塔高度hc、避雷线保护角θs、地面倾角θg、击距系数k等的对应变化关系。结果表明,n随hc增加、θs增大、θg增大、k减小而增大,采用负θs和降低hc是提高500kV同塔4回线路绕击耐雷性能的有效办法。  相似文献   

12.
对一起220kV高压输电线路雷击跳闸的原因进行了分析研究,由于杆塔处于空旷丘陵半山坡处,山坡倾角大,雷电绕击导线概率较高,根据现场情况结合雷电定位系统数据采用规程法、改进电气几何模型法计算判定该杆塔发生雷击跳闸的原因为雷电绕击,并根据杆塔所处地形及雷害情况,提出可通过安装可控放电避雷针、防绕击预放电避雷针等措施来达到降低线路雷击跳闸率的目的。  相似文献   

13.
由于特高压线路本身的特点,雷电绕击是危及特高压输电线路安全可靠运行的主要因素之一,而现有评估输电线路绕击跳闸率的EGM模型难以取得与线路实际运行经验相一致的结果.为确保我国特高压线路安全稳定运行,研究改进特高压架空线路的绕击性能预测模型是当前我国特高压试验示范工程亟待解决的重要课题之一.本文综合考虑国内外已有成果,包括雷电对导线,地线和大地三者击距的差异、风偏影响、地形影响和导线工作电压影响等,提出综合考虑这些因素的改进EGM.应用改进模型,对我国UHVAC试验示范工程初步设计的ZMP2和ZBS2塔型的线路进行了绕击性能分析.仿真结果表明,随着地面倾角的增大,在只考虑导线工作电压峰值和考虑导线工作电压随相位变化这两种情况下,绕击跳闸率差别可达0.16次/100km·a,因此必须考虑雷击时导线工作电压相位的概率分布.随着风速和地面倾角的增大,绕击跳闸率呈加速度增长.杆塔为ZBS2的线路,在所考察范围内不会发生绕击跳闸,而杆塔为ZMP2的线路,只有当地面倾角小于10°时,才能满足特高压线路对绕击跳闸率的要求.  相似文献   

14.
输电线路绕击跳闸率的改进电气几何模型   总被引:3,自引:0,他引:3  
在原有的经典电气几何模型的基础上,提出了相应的改进方法.引入击距系数β来描述雷击输电线路时,避雷线的击距与大地击距的不同.同时对原来计算线路绕击跳闸率的方法进行改进:采用距离差来计算绕击跳闸率.最后采用此种方法,针对典型的单回500 kV酒杯塔,计算和分析了不同保护角和地面倾角时对绕击跳闸率的影响.  相似文献   

15.
《高压电器》2013,(4):54-59
±660 kV高压直流输电线路是世界上首条该电压等级的线路,大跨越段是耐雷性能比较薄弱的部分,因此有必要对其耐雷特性进行更加详细的研究。笔者利用改进的EGM,考虑雷电对导线、地线和大地三者击距的差异、风偏影响、地形影响和导线工作电压影响等,对中国±660 kV高压直流输电线路的大跨越段进行了绕击耐雷性能分析。仿真结果表明,随着地面倾角的增加,导线工作电压对绕击跳闸率的影响减小,但不容忽视,因此计算中必须考虑导线工作电压。随着风速和地面倾角的增大,绕击跳闸率呈加速度增长。当地面倾角大于20°,风速大于20 m/s时,大跨越线路的绕击跳闸率超过指标要求0.1次/(100 km.a)。鉴于大跨越线路大都处于地理和气候条件恶劣的地方,因而要加强线路的雷电防护措施,从而提高大跨越线路的绕击耐雷性能。  相似文献   

16.
针对传统规程法计算输电线路绕击跳闸率精确度低的问题,采用改进电气几何模型,引入山区地面倾角,通过求出暴露距离,进而根据雷电流概率分布得到绕击跳闸率。对保山电网朝黄II回输电线路进行绕击风险评估,分析地面倾角和避雷线保护角对绕击性能的影响。结果表明,采用改进电气几何模型的结果要比规程法的结果更精确,地面倾角和避雷线保护角增大,绕击跳闸率也随之增大。  相似文献   

17.
《高压电器》2013,(4):86-91
对山区同塔双回线路的耐雷性能进行研究,改进基于电气几何模型的山区输电线路绕击率算法,通过引入新判据Rx计算暴露距离,对比Rx与雷电对地击距Rg大小,讨论不同雷电流对应下的暴露距离计算方法,并对典型山区同塔双回线路绕击率进行计算,得出保护角最大的相导线并不是最可能发生绕击的,绕击率的大小与导线高度、保护角、地面倾角有关。通过分析各相线路的暴露距离与雷电流关系,解释某相线路发生绕击的现象。研究结果对同塔双回线路的防雷设计具有一定借鉴意义。  相似文献   

18.
准确评估特高压(UHV)线路绕击耐雷性能,对线路设计及施工具有重要参考价值。为此,引入了基于先导发展法的,可精确反映任意剖分区域导、地线弧垂及与大地实际相对高度的特高压输电线路雷电绕击3维剖分模型。为进一步验证该模型的实际应用价值,分析了我国晋东南—荆门1 000kV特高压交流示范线路绕击耐雷性能,及绕击跳闸率随保护角、地面倾角的变化规律。分析结果表明:ZMP2型猫头塔最大绕击跳闸率为0.057 5次/(100km.a),ZBS2型酒杯塔最大绕击跳闸率为0.032 2次/(100km.a),两型杆塔的绕击跳闸率均满足设计要求,工程中可通过适当控制导、地线的弧垂来降低线路的绕击概率;山坡外侧导线更易遭受雷击,线路绕击跳闸率随线路保护角及地面倾角增大而大幅度上升;大电流绕击发生在距线路较远处。  相似文献   

19.
采用电气几何模型算法,克服现有规程中计算方法的局限性,对500 kV同塔双回输电线路的绕击跳闸率进行计算。通过改变地面倾角、杆塔保护角和击距系数等参数,得出2种典型塔型在不同条件下的绕击跳闸率,并分析了杆塔高度、地面倾角等参数对绕击跳闸率的影响。  相似文献   

20.
为计算、评估超高压输电线路防雷电绕击性能,基于改进的电气几何模型对超高压输电线路绕击跳闸率进行了相关计算.应用自编程序对锦屏一级电站一西昌换流站500 kV同塔双回输电线路进行计算,结果表明随着保护角、地面倾角、杆塔高度的增加,雷电绕击跳闸率明显增加,超高压同塔双回线路推荐采用负保护角运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号