首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
目前,逆变电源的相移控制一般应用在单个逆变器中,而逆变电源容量的提高常采用多管并联或高频变压器并联的方式实现.提出了一种控制、调节逆变电源并提高其输出功率的新方法.该方法通过控制多个逆变器间的相移来有效控制和调节逆变电源的输出功率,同时通过多相并联电感一电感一电容(LLC)电压型谐振逆变器来提高逆变电源输出功率.推导出了不同相移控制下各相逆变器输出电流、输出有功功率及负载电流和电源效率的计算公式,并对不同相移时逆变器输出有功功率、无功功率和负载功率进行了仿真分析,同时设计了两相并联相移控制LLC电压型谐振逆变电源实验样机,进行了实验验证.仿真和实验结果表明,所提出的新方法能有效控制和调节逆变电源的输出功率,提高电源容量,简化功率调节过程,降低开关损耗,从而提高系统效率.  相似文献   

2.
臧小惠  惠晶 《电源学报》2005,3(3):223-226
采用基于DSP的数字锁相环(DPLL)对高频逆变电源输出频率的实时控制,可实现逆变器工作频率对负载谐振频率的同步跟踪,确保逆变器开关器件工作在零电压电流软开关(ZVZCS)状态,显著减小功率器件的开关损耗和提高装置效率。本文在给出DPLL控制的逆变电源拓扑结构基础上,推出了适用于高频逆变电源的锁相环数学模型,在Z域中对二阶数字锁相环进行了稳定性分析和动态设计。在对锁相环Z域传递函数分析的基础上,得出二阶数字锁相环的稳定条件,并用MATLAB对其进行了仿真分析,最后进行了实验验证。仿真和实验结果表明在Z域中对基于DSP的二阶数字锁相环的动态分析和设计是合理可行的,用此方法设计的电源具有良好的动态响应和抗扰性能。  相似文献   

3.
基于DSP的软开关移相控制100kHz逆变电源   总被引:1,自引:0,他引:1  
研究了一种基于DSP的移相-脉宽调制(Phase-Shifted Pulse Width Modulation,简称PS-PWM)控制100 kHz高频逆变电源:给出了基于IGBT的主电路拓扑结构,并分析了其控制原理;设计了以DSP为核心的控制电路,并给出了其控制程序流程图.采用TMS320F2812型DSP,实现了系统的数字控制和数字锁相环(DPLL)频率跟踪,满足了系统控制的实时性和灵活性.仿真分析和实验结果证明,该逆变器可在大的功率调节和频率变化范围内实现软开关.  相似文献   

4.
采用基于DSP的数字锁相环(DPLL)对高频逆变电源输出频率的实时控制,可实现逆变器工作频率对负载谐振频率的同步跟踪,确保逆变器开关器件工作在零电压电流软开关(ZVZCS)状态,显著减小功率器件的开关损耗和提高装置效率。在给出DPLL控制的逆变电源拓扑结构基础上,推出了适用于高频逆变电源的锁相环数学模型,在Z域中对二阶数字锁相环进行了稳定性分析和动态设计。在对锁相环Z域传递函数分析的基础上,得出二阶数字锁相环的稳定条件,并用MATLAB对其进行了仿真分析及实验验证。仿真和实验结果表明在Z域中对基于DSP的二阶数字锁相环的动态分析和设计是合理可行的,用此方法设计的电源具有良好的动态响应和抗扰性能。  相似文献   

5.
介绍了一种基于数字信号处理器(DSP)的移相调频(Phase-ShiftedandFrequency-Varied,PSFV)PWM控制逆变电源,给出了主电路拓扑结构,分析了其控制原理并设计了其控制程序流程图。新颖的PSFV控制能够实现输出电压90%的调整率,输出电流波动小于单纯移相调功PWM方式,并在轻载时保持连续。功率开关器件零电压零电流通断(Zero-Voltage-Zero-CurrentSwitching,ZVZCS)软开关的实现,有利于进一步提高开关频率和降低开关损耗。采用高性能的专用DSP芯片TMS320F2812实现了系统的数字控制,满足了系统控制的灵活性和实时性,减小了系统的体积和生产成本。仿真分析和实验结果证明了此控制模式的可行性与合理性。  相似文献   

6.
本文介绍了一种基于数字信号处理器(DSP)的移相调频(PSFV-PWM)控制逆变电源,给出了主电路拓扑结构,分析了其控制原理并设计了控制程序流程,新颖的移相调频控制能够实现输出电压90%的调整率,输出电流波动小于单纯移相调功PWM方式,并在轻载时保持连续。实现了功率开关器件的ZVZCS(零电压零电流通断)软开关,有利于进一步提高开关频率和降低开关损耗。DSP采用高性能的专用数字信号处理芯片TMS320F2812,实现了系统的数字控制,满足了系统控制的灵活性和实时性,减小了系统的体积和生产成本。仿真分析和实验结果证明了此控制模式的可行性与合理性。  相似文献   

7.
采用基于DSP的数字锁相环(DPLL)对高频逆变电源输出频率进行实时控制,可实现逆变器工作频率对负载谐振频率的同步跟踪,确保逆变器开关器件工作在零电压零电流软开关(ZVZCS)状态,显著减小功率器件的开关损耗和提高装置效率。本文在给出DPLL控制的逆变电源拓扑结构的基础上,推出了适用于高频逆变电源的锁相环数学模型,在Z域中对二阶数字锁相环进行了稳定性分析和动态设计。在对锁相环Z域传递函数分析的基础上,得出二阶数字锁相环的稳定条件,并用MATLAB对其进行了仿真分析,最后进行了实验验证。仿真和实验结果表明,在Z域中对基于DSP的二阶数字锁相环的动态分析和设计是合理可行的,用此方法设计的电源具有良好的动态响应和抗扰性能。  相似文献   

8.
基于DPLL的高频逆变电源建模与研究   总被引:8,自引:4,他引:4  
采用基于DSP的数字锁相环(DPLL)对高频逆变电源输出频率进行实时控制,可实现逆变器工作频率对负载谐振频率的同步跟踪,确保逆变器开关器件工作在零电压零电流软开关(ZVZCS)状态,显著减小功率器件的开关损耗和提高装置效率。本文以负载串联谐振逆变电源为模型,针对负载参数变化引起的固有谐振频率变化,导致逆变器效率降低及开关器件应力增加的普遍现象,提出一种基于DPLL控制的逆变电源。结合锁相环的数学模型,讨论了DPLL控制的逆变电源的数学建模,在Simulink环境中该电源的构筑及串联谐振负载的模型,给出了相应的仿真波形和实用电源试验波形,为分析和设计逆变电源提供了必要的理论依据。  相似文献   

9.
针对逆变器在串联谐振负载条件下,移相脉宽调制(PSPWM)中移相角变大时电流波形三角畸变严重,脉冲密度调节(PDM)轻载时电流断续的缺点,将PDM与PSPWM结合起来,组成移相密度复合调节(PSPWMPDM),对逆变器进行功率控制,逆变器始终工作在零电流开关(ZCS)状态。详细分析了PSPWMPDM的工作模式和控制原理,给出了仿真和实验波形。  相似文献   

10.
混沌SPWM功率变换器IGBT的Icepak温升仿真与实验   总被引:1,自引:1,他引:0       下载免费PDF全文
以四象限整流器中IGBT为例,为混沌SPWM控制下功率开关器件进行温升分析。首先基于SolidWorks对功率器件IGBT搭建了3D模型,并将其导入Icepak中,然后通过IGBT的损耗分析模型理论计算了整流器分别工作于混沌SPWM和传统SPWM控制方式下的IGBT的损耗功率,并在Icepak中进行相应的动态仿真,仿真结果表明在同样的输出功率条件下,工作在1 kHz频率时,基于Logistic映射的混沌SPWM控制下变换器功率器件温升与传统SPWM控制下的器件温升略有区别。最后,基于仿真模型搭建了温升实验平台,实验证明了仿真的正确性,并为混沌SPWM功率变换器的温升研究提供了一种分析方法。  相似文献   

11.
针对感应式无线电能传输系统中高频逆变器效率和负载电压无级调节的两个关键问题,提出一种移相脉宽调制(PSPWM)和脉冲密度调制(PDM)兼用的混合调制方法,其中,变流器主频率一定、开关处于电压软开关状态,有选择地对PDM中某一脉冲实施移相处理,并利用脉冲密度数和移相角大小调节输出电压和功率,实现变流器的高效率运行和输出电压平滑稳定调节。通过实验,对上述PDM和PSPWM与所提出的混合调制方式的负载输出电压平滑性与逆变器效率进行了对比分析,所提出的混合调制方式在实现无级调压的情况下纹波系数较PDM减少了9%、逆变器的损耗相对于PSPWM减小了5%~20%。  相似文献   

12.
串联谐振逆变电源新型功率调节控制策略   总被引:1,自引:1,他引:0  
针对移相调功轻载时的缺陷,介绍了一种基于DSP的新型PWM功率控制策略,给出了一种简单可靠的主电路,并分析了其工作原理及控制流程。实验证明,该调功方式解决了传统移相方法中调功范围与软开关的矛盾,降低了功率管的损耗,提高了感应加热电源的效率。  相似文献   

13.
正弦波逆变电源输出受到瞬时值反馈不及时的影响,导致电源输出均衡性较差。为了提高正弦波逆变电源的稳态控制能力,提出基于数字信号处理DSP(digital signal processing)的正弦波逆变电源瞬时值反馈优化控制方法,建立逆变电源系统基本结构,构建三相级联H桥控制电路,并完成控制电路的构建及电源电路的设计。在零序电压的反馈调节下,实现电源电压的平衡控制和电压自均衡耦合调节,利用电压自均衡耦合控制器对正弦波逆变电源的输出功率进行补偿抑制;利用DSP技术对电源输出信号进行反馈处理,得到瞬时值反馈的控制优化算法;对逆变电源控制系统的软件及硬件进行优化设计,完成基于DSP的正弦波逆变电源瞬时值反馈优化控制。测试结果表明,使用该方法进行正弦波逆变电源控制的输出增益较高、控制稳定性较好、对电源输出的电流纹波抑制能力较强,提高了电源的输出质量。  相似文献   

14.
单相五电平逆变器的多载波PWM方法分析   总被引:1,自引:0,他引:1  
针对单相五电平级联逆变器,对不同的多载波PWM方法进行分析。采用载波移相(PS)PWM方式时,其输出波形中含有幅值较大的高次谐波,而载波垂直分布(CD)PWM方式不存在这些问题,但是CDPWM调制方式的低次谐波比较大。与CDPWM调制方式相比,采用PSPWM调制方式所产生的低次谐波分量非常小。结合2种PWM调制方式各自的优点,提出一种混合多载波PWM方法。通过对典型的五电平PWM单相逆变电路的Matlab仿真计算,证明了混合多载波PWM法输出波形中的高次谐波含量小,低次谐波分量介于PSPWM调制方式和CDPWM调制方式之间,总的谐波畸变率最小。因此,对于单相的五电平逆变器而言,混合调制方式为最优。  相似文献   

15.
传统的SPWM和SVM实现方法割裂了二者的联系,使得调制方法缺乏灵活性。通过对SPWM和SVM的建模,提出了一种新型通用调制方法。仿真和实验表明,该方法将SVM和SPWM统一起来,可以更好地提高逆变效果而不必中断芯片运行,同时该方法计算量更小,精度更高,为进一步改善逆变波形质量,提高系统控制精度创造了条件。  相似文献   

16.
ABSTRACT

A Digital Signal Processor (DSP) based voltage-fed Insulated Gate Bipolar Transistor (IGBT) inverter that drives a three-phase induction motor is presented. The selected DSP, a TMS320C14 chip by Texas Instruments, controls the PWM operation of the inverter. A host IBM PC is connected to the DSP through an RS-232 serial interface for data communications to and from the DSP. IGBTs are used in the inverter because of their characteristically low conduction losses, small switching delays and simplified gate drive circuit. A harmonic elimination scheme is adopted as the PWM strategy to eliminate four low-order harmonics in the inverter output.

The inverter performance is tested using a 1 HP, three-phase induction motor. The output waveforms are recorded and the harmonic spectra are developed using a FLUKE 41 power harmonics analyzer and the results show decidedly suppressed low-order harmonics. The design also highlights the simplicity and cost effectiveness of the DSP based modulator and IGBT based inverter design.  相似文献   

17.
为研究基于电容箝位五电平H桥逆变器的应用,以电容箝位5电平H桥构成三相逆变器,结合电容箝位3电平和常规H桥电路的优点,并采用消谐波PWM和载波相移PWM相结合的调制策略,对所采用的逆变器拓扑及其控制策略的有效性进行了仿真和实验验证。结果表明:所采用的逆变器拓扑可以方便地得到5电平输出,提高了输出电压和功率等级;所采用的控制策略能够有效提高等效载波频率,降低滤波器的体积和容量;两种调制方法的结合可发挥各自的优势,使控制灵活、实现简单。  相似文献   

18.
随着新能源技术的发展,高性能的并网逆变器已成为研究热点。分析了H桥级联逆变器的拓扑结构及载波移相技术的原理,提出一种基于DSP+CPLD实现载波移相的方法,将该方法应用于H桥级联多电平并网逆变器系统中,并通过仿真和实验证明了该方法的可行性,以及系统具有并网电流谐波含量低,开关器件等效开关频率高,低压开关器件实现高压输出的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号