首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
介绍了一种基于FPGA芯片实现的可重构DDS信号发生器.论述了可重构直接数字频率合成(DDS)技术的工作原理、设计思路、具体硬件电路及编程实现方法,并且设计了一个实用的五通道信号发生.用户可通过上位机下载波形样品到Flash存储器中实现波形重构,采样点数可根据输出频率选择,在工程应用上具有实际意义.  相似文献   

2.
基于FPGA的VGA图象信号发生器设计   总被引:1,自引:0,他引:1  
为了方便地获得可视化的标准图形信号,针对VGA(视频图形阵列)接口显示器的检测要求,设计了一种基于FPGA(现场可编程门阵列)的VGA图像信号发生器。阐述了采用FPGA产生图像信号的设计原理,通过FPGA MCU(微程序控制器)组合,利用FPGA产生时序信号及图形信息存储、MCU完成功能控制与显示驱动,实现了图象数据处理的实时性和稳定性。具有电路简单,实用性好的特点。可以广泛用于视频和计算机的显示技术领域。  相似文献   

3.
虞敏  唐慧强  李超 《电子测量技术》2012,35(5):114-117,131
介绍了以Altera公司RISC结构的NiosII软核处理器作为系统的处理器,以FPGA芯片作为硬件平台,实现了激光雪深测量系统的设计,分别设计完成直接数字频率合成器DDS激光调制信号源、信号处理、人机交互界面等功能模块。DDS采用数字合成技术,其在精度、灵活度以及可靠性方面都大大超过了模拟信号发生器,用FPGA芯片作为DDS的载体,具有性价比高、设计灵活等优点。信号处理模块采用基于FPGA的高频脉冲填充数字鉴相技术,该技术取代了传统的鉴相方式,既简化了硬件电路又提高了鉴相精度。  相似文献   

4.
本文介绍了DDS(直接数字频率合成)技术的基本工作原理,然后以ADI公司的DDS芯片AD9851、AD9854、AD9954为例详细分析基于DDS技术的信号发生器设计以及比较研究这三款芯片的性能和应用电路之间的差异,给出了基于这三种DDS芯片的信号发生器的应用特性。为设计结构简洁、性能稳定可靠的DDS信号发生器提供了十分有价值的应用方案参考。  相似文献   

5.
超声检漏作为一种新型检漏方法,越来越多地应用于工业现场.为满足超声检漏中超声探头激励的需要,介绍了一种任意波形发生器的设计,利用直接数字式频率合成(DDS)技术,以FPGA作为主要器件,并辅以必要的放大、滤波电路,实现任意波形的产生.通过串行接口,用单片机来设定频率和幅度的大小以及波形的选择;FPGA用来改变DDS频率控制字,并由FPGA来实现波形表生成和频率控制;将FPGA产生的波形数据送入到AD7524进行D/A转换,通过低通滤波器和集电极开路电路来提高输出波形质量并增强其带负载能力.最后给出了本设计产生的正弦信号与函数发生器产生的正弦信号的频谱分析比较.  相似文献   

6.
基于DDS的雷达任意波形信号源的研究   总被引:6,自引:0,他引:6  
现代雷达信号波形产生主要采取直接数字频率合成技术(DDS),运用直接数字频率合成产生任意复杂波形的技术日益受到重视.本文介绍了DDS的关键技术,DDS芯片的使用和运用FPGA产生复杂波形的原理.设计并实现了一种由AD公司生产的直接数字频率合成芯片和FPGA共同实现的双DDS任意波形信号源系统.该系统具有频率分辨率高、频率切换速度快、可输出多种复杂波形、可视化界面、波形可编程等特点.  相似文献   

7.
直接数字频率合成技术DDS,在现代雷达信号波形产生中具有重要的地位.本文主要介绍了基于DDS的宽带雷达信号产生的几项关键技术,提出了一种宽带捷变雷达信号的产生方案,并详细介绍了基于FPGA的DDS设计的基本原理、电路结构和设计优化方法.利用Altera公司Cyclone系列芯片并采用线性插值法进行设计与仿真,不仅很方便地产生了线性调频信号(LFM),并且所产生的信号具有频率分辨率高、频率转换速度快以及相位噪声低等优点.理论分析和计算机仿真结果均验证了该方案的正确性和有效性.  相似文献   

8.
基于DDS的多调制功能正弦信号发生器   总被引:3,自引:1,他引:2  
为了研究一种基于直接数字频率合成技术(DDS)的正弦信号发生器,以89S52和现场可编程门阵列(FPGA)为控制核心,DDS专用芯片AD9851为正弦信号模块,并设计实现AM、FM及二进制键控(PSK、ASK)等多调制信号功能。结果表明:实现了频率范围1Hz-30MHz正弦信号的无失真输出;通过以AD811和推挽电路为基础的后级功放,正弦信号的输出幅度在50Q负载上达到Vopp=20V;多调制信号输出稳定。  相似文献   

9.
介绍了采用DDS激励PLL技术的宽带线性调频信号源的设计与实现,给出了主要的硬件电路和软件设计方案。由FPGA控制DDS芯片AD9910产生带宽可变的线性调频信号,采用DDS激励PLL的锁相倍频技术将信号倍频到4GHz。实验表明,基于该方案设计的线性调频信号源具有较高的频率分辨率和频率精确度,所产生的线性调频信号频谱干净稳定,满足雷达系统应用的要求。  相似文献   

10.
设计了一种以单片机为控制单元的可调频调幅激励源.它由信号发生电路、放大电路以及功率输出级构成.正弦波发生器是基于直接数字频率合成器(DDS)芯片AD9833,放大电路利用数字电位器MAX5400来实现电压幅度调节.输出级以集成功率放大芯片PA05为主放大器,采用了改进的Howland电流泵以产生稳定的电流,并设计了电压自动跟随电路为PA05供电.经实验验证,该激励源频率(0~ 300 kHz)和电流(0~30 A)分别连续可调,具有良好的频率和幅度稳定性.  相似文献   

11.
在深入分析直接数字合成(DDS)原理的基础上,提出了在FPGA上嵌入DDS技术实现高性能信号源模块的设计方案。该方案采用了一种基于FPGA的高速48位DDS相位累加器优化方法,利用高速SRAM和ROM相结合的方式大幅度提高信号源的波形存储深度。选用超高速低失真16位D/A转换芯片AD9726,设计了基于椭圆函数的低通滤波器并给出其仿真结果。测试表明,该信号源模块具有高速度、高分辨率和低失真等特性。  相似文献   

12.
为了实现医用电磁导航系统波形发生装置的小型化、便捷化,介绍了一种采用DDS芯片AD9833与数字电位器AD5252芯片来产生幅值、频率、相位均可调的正弦信号发生装置。系统利用C8051F320单片机通过SPI通信控制AD9833来调节正弦波的频率、相位,通过IIC通信控制数字电位器AD5252配合运算放大器实现正弦波幅值的调节。同时,开发了一个基于VB语言的上位机界面,能实现直观、便捷的控制。实验结果表明,本信号发生装置工作可靠、易于控制、输出信号精度高。  相似文献   

13.
介绍基于直接数字频率合成(DDS)的飞机供电系统测试信号源工作原理,提出以FPGA+单片机实现三相正弦测试信号源.针对DDS电路输出波形杂散度受ROM内存容量有限的限制,采用两片ROM存储一个周期的正弦波数据,减小了高位截断杂散.实验检测结果显示,信号发生器能输出频率准确度≤±0.1%,幅值准确度≤±3%,相位准确度≤±1%的三相正弦波形.  相似文献   

14.
基于FPGA的DDS多路信号源设计   总被引:2,自引:0,他引:2  
提出了一种基于FPGA的DDS多路信号源的原理方案和实现方法.该信号源以高精度D/A转换器为核心构成波形重构电路.使用电子模拟开关实现多路信号输出切换.设计的信号源可同时输出32路,波形信号可为正弦波、锯齿波、三角波和矩形波,且输出信号的频率、幅值和偏置灵活可调.  相似文献   

15.
用DDS芯片及单片机设计微型短波信号发生器   总被引:2,自引:0,他引:2  
文中是关于用DDS芯片和单片机设计一种精密微型短波信号发生器的可行性论证.文章简述其基本原理,并着重于硬件角度的描述.当输入时钟信号为12.8MHz时,输出频率上限可达30.72MHz.利用现代数字化系统的优势,应用先进的DDS专用芯片AD8951与单片机配合,实现频率、相位的准确输出,可靠性高.设计方案适用于当代尖端的通信系统和高精度仪器.  相似文献   

16.
用单片机与FPGA实现的DDS波形发生器   总被引:1,自引:0,他引:1  
本文提出了一种用单片机和FPGA实现DDS信号源的实现方案。通过采用十进制累加器消除了二进制频率控制原理存在的固有误差,提高了信号源精度。通过对波形数据的量化减少了所需的存储容量。文中详细介绍了十进制频率控制原理,并例举了一种100Hz~200KHz,步进100Hz的DDS波形发生器的参数设计及实现。仿真结果表明,该设计简单合理,能够有效的消除二进制频率控制原理存在的误差,整个系统在保证频率精度的同时可快速获得输出波形。  相似文献   

17.
为实现CELLPACK信号的实时处理,通过对相关采集系统对比分析,设计了基于FPGA的CELLPACK信号采集系统。在该数据采集系统中,以现场可编程逻辑门阵列(FPGA)控制芯片为核心,由12bit的串行ADC对CELLPACK信号进行采样,FPGA实现的系统接收采样信号并实现实时串并转换、滤波及脉冲甄别等信号处理操作,然后将有效数据同时写入异步FIFO和SDRAM供微控制器(MCU)通过异步总线接口进行读取,从而计算出CELLPACK中的血球细胞密度。该系统已成功应用于某血细胞分析仪的产品生产中,能有效地实现信号的采集处理及存储功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号