首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
《高压电器》2021,57(3)
由于C_6F_(12)O具有优良的绝缘性能和环保特性,受到国内外SF_6替代气体领域内学者们的广泛关注。为探索C_6F_(12)O混合气体应用的最优方案,研究O_2对C_6F_(12)O/CO_2混合气体绝缘性能和分解特性的影响。搭建气体工频击穿试验平台对不同O_2混合比、不同气压的C_6F_(12)O/CO_2混合气体进行工频击穿试验研究,使用气相色谱质谱联用仪(GC-MS)定性定量分析150次工频击穿后混合气体的分解产物,同时观察击穿后电极表面固体物质析出量的变化,探讨应用于工程的C_6F_(12)O/CO_2混合气体的O_2混合比与气压范围。研究结果表明,C_6F_(12)O/CO_2混合气体中加入3%~7%的O_2可以较好地提升气体绝缘性能,此外加入O_2在击穿放电时能够抑制固体碳的析出,降低高毒性物质C_3F_6的体积分数,但是会促进C_6F_(12)O的分解,使得CF_4、C_2F_6、COF_2、CO的体积分数上升。综合考虑绝缘性能和分解特性后认为气压范围为0.1~0.18 MPa,O_2混合比为3%~5%的C_6F_(12)O-CO_2-O_2混合气体具有一定的工程实用价值。  相似文献   

2.
为研究C_4F_7N(全氟异丁腈)与CO_2、N_2和空气3种缓冲气体混合后作为绝缘介质替代SF_6的潜力,在均匀电场下对C_4F_7N/CO_2、C_4F_7N/N_2和C_4F_7N/空气混合气体的工频绝缘性能进行了研究,其中混合气体气压为0.1~0.7MPa、C_4F_7N占比为5%~20%。对比了含不同缓冲气体的C_4F_7N混合气体绝缘特性,分析了气压和混合比例等因素对混合气体工频击穿电压的影响。试验结果表明,C_4F_7N/CO_2和C_4F_7N/空气混合气体击穿电压随气压升高呈线性增长,而C_4F_7N/N_2混合气体在较高气压下呈微弱的饱和趋势;3种C_4F_7N混合气体的工频击穿电压随混合比例的增加大致呈线性增长。C_4F_7N/CO_2、C_4F_7N/N_2和C_4F_7N/空气混合气体相对于SF_6的绝缘强度随气压的变化并非定值,在0.4 MPa附近相对SF_6绝缘强度存在极小值。C_4F_7N/N_2混合气体在放电条件下的碳析出现象较为明显,严重时会导致C_4F_7N/N_2混合气体击穿电压大幅下降。综合考虑C_4F_7N混合气体的绝缘性能、液化温度和放电条件下的碳析出程度,CO_2和空气是C_4F_7N适合的缓冲气体。  相似文献   

3.
近年来,环保气体C_4F_7N被人们广泛研究来取代SF_6在气体绝缘设备中的地位。为较为全面地揭示不同电场分布、气压、混合比例条件下C_4F_7N/CO_2混合气体的工频击穿特性及其工程应用配置方案,计算了不同C_4F_7N混合比例、气压下C_4F_7N/CO_2混合气体的液化温度,通过不同电极形式下该气体的工频击穿试验,得到不同条件下C_4F_7N/CO_2混合气体和SF_6的击穿特性。试验发现,在电场不均匀度增大过程中,C_4F_7N/CO_2混合气体出现了击穿电压突变的N型曲线特征,SF_6也表现出类似的现象。此外,根据C_4F_7N/CO_2混合气体液化温度为–10℃的限制,当气压范围在0.3 MPa及以上且电场不均匀度为1.05、1.58、9.6、13.8和22.5时,其C_4F_7N体积分数需要分别达到9%、5%、7%、5%、5%,才能使得C_4F_7N/CO_2混合气体绝缘强度可达到SF_6绝缘强度的0.8倍;若要求C_4F_7N/CO_2混合气体绝缘强度达到SF_6的0.9,则需提高C_4F_7N体积分数至13%及以上。  相似文献   

4.
《高压电器》2021,57(3)
文中介绍了一种新型环保绝缘气体六氟丙烯(1-C_3F_6),并重点研究了1-C_3F_6与CO_2混合气体在不同电极结构和电压特性下的绝缘特性。研究表明:在均匀电场中,1-C_3F_6/CO_2混合气体的50%击穿电压随着电极间距、气压的增加而增加,工频击穿电压随着充气压力的升高而近似线性升高,纯1-C_3F_6气体在1.25 bar(1 bar=100 k Pa)时的工频击穿电压与SF_6接近。此外,在各个充气压力下,1-C_3F_6/CO_2混合气体的工频击穿电压都比C_5F_(10)O/Air混合气体高。在稍不均匀电场中,1-C_3F_6/CO_2混合气体直流和工频击穿电压随着充气压力的升高而升高,表现出较好的线性度。在极不均匀电场下,1-C_3F_6/CO_2混合气体工频击穿电压随着充气压力的升高而缓慢升高,逐渐趋于饱和。文中的试验结果可以为电力产品设计提供参考和依据。  相似文献   

5.
SF_6因优异的电气特性广泛应用于电器绝缘设备中,但其产生的温室效应对大气环境具有极大损害。近年来,C_5F_(10)O作为一种环保型SF_6潜在替代气体受到国内外科研工作者的关注。为进一步探究C_5F_(10)O/干燥空气与C_5F_(10)O/N_2的绝缘特性,文中利用气体绝缘性能测试平台,对不同气压、不同C_5F_(10)O分压下的2种混合气体在准均匀电场下进行工频击穿试验。实验结果表明,C_5F_(10)O混合气体绝缘强度随气体压强的增大而增大;提高C_5F_(10)O分压亦可提高两类缓冲气体的绝缘强度,且对N_2绝缘强度提升相对值大于干燥空气。从绝缘强度考虑,适当增大C_5F_(10)O混合气体气压和C_5F_(10)O分压,C_5F_(10)O/干燥空气比C_5F_(10)O/N_2混合气体更具潜力替代室内中低压设备中的SF_6。  相似文献   

6.
直流气体绝缘金属封闭输电线路(GIL)充SF_6混合气体或SF_6替代气体时,其绝缘性能将受到自由金属微粒的影响。本文重点针对C_4F_7N/CO_2以及SF_6/N_2混合气体,开展绝缘强度的影响分析。选用的实验气体组份为:C_4F_7N/CO_2(4%/96%)、SF_6/N_2(其中SF_6比例分别为20%、30%、50%和70%)以及纯SF_6气体,在球-碗电极直流电场下,开展微粒影响下的气隙击穿实验。提出微粒放电敏感度(DSP)的概念及定义,用以评估不同组分气体绝缘强度对金属微粒导致的局部电场强度剧变的敏感程度。实验结果表明,在0.1~0.5MPa气压范围内,不存在微粒时,4%C_4F_7N/96%CO_2绝缘强度与30%SF_6/70%N2混合气体相当;存在微粒影响时,4%C_4F_7N/96%CO_2混合气体的DSP值低于30%SF_6/70%N2混合气体的,而高于20%SF_6/80%N2混合气体的,且放电电流呈现双峰值特征。C_4F_7N/CO_2混合气体具有绝缘强度高、对微粒放电敏感度低的特性,这与C_4F_7N具有强电负性和高吸附系数有关。本文还结合微粒运动触发放电的物理模型,阐明了气隙击穿电流出现双峰特征的原因。  相似文献   

7.
C_4F_7N/CO_2混合气体作为最新一代的环保型绝缘气体,具有优良的电气性能和低温室效应潜能值,有极大的替代SF_6的应用前景。目前,国内外的相关研究才刚刚起步。使用针–板电极模拟极不均匀电场,实验研究C_4F_7N/CO_2混合气体的雷电冲击击穿特性,分析气压、间距、混合比例等因素对混合气体绝缘特性的影响及其极性效应,并与相同条件下纯SF_6进行对比。结果表明:极不均匀电场中,C4F7N混合比5%~10%的C_4F_7N/CO_2混合气体正极性雷电击穿电压随气压的升高呈现明显饱和趋势,存在显著的"驼峰"现象,而负极性时击穿电压在较高气压时才逐渐趋于饱和;混合比为5%的C_4F_7N/CO_2混合气体正极性雷电击穿电压最高能够达到相同条件下SF_6的0.8倍,混合比为10%时最高可达相同条件下SF_6的0.9倍,负极性时C_4F_7N/CO_2混合气体相对SF_6绝缘强度略低于正极性;极不均匀电场中,C_4F_7N/CO_2混合气体雷电击穿电压存在明显的极性效应和极性反转现象,总体上负极性击穿电压显著高于正极性,仅在较低气压时正极性稍高。研究结果表明,C_4F_7N/CO_2混合气体非常有潜力替代SF_6。  相似文献   

8.
C_4F_7N/CO_2环保混合气体作为SF_6的潜在替代气体,被国内外研究学者广泛关注。目前研究主要集中在C_4F_7N/CO_2混合气体的间隙绝缘特性,未见在混合气体中绝缘子沿面绝缘特性的研究。为此,建立了C_4F_7N/CO_2混合气体中绝缘子沿面闪络实验平台,联立PR方程以及安托万方程,对气体混合方法进行了修正,研究了均匀电场下,C_4F_7N/CO_2混合气体的工频间隙击穿电压以及沿面闪络电压与气压及C_4F_7N摩尔百分比的关系。结果表明,5%C_4F_7N/95%CO_2绝缘强度达到SF_6的70%,温室效应降低了99.5%;13%C_4F_7N/87%CO_2的相对绝缘强度可达到80%;17%C_4F_7N/83%CO_2的相对绝缘强度可达到90%以上。综合考虑绝缘强度、液化温度、温室效应以及经济性,对工程应用中C_4F_7N的摩尔百分比及混合气体气压选择方案进行讨论,得出选择低混合比下高气压的方案优于高混合比低气压方案。  相似文献   

9.
为寻找温室效应指数(GWP)低的SF_6替代气体,研究了c-C_4F_8/N_2与c-C_4F_8/CO_2混合气体的绝缘性能,在球板电极下进行了不同间隙距离、不同气压、不同气体体积分数的c-C_4F_8/N_2与c-C_4F_8/CO_2混合气体工频击穿实验。同时进行了SF_6、c-C_4F_8、N_2和CO_2的对比实验,并对击穿之后的分解产物进行了检测。实验结果表明:c-C_4F_8/N_2与c-C_4F_8/CO_2混合气体的击穿电压值都随着间隙距离、气压和c-C_4F_8体积分数的增加而增加;c-C_4F_8气体与N_2、CO_2之间均存在协同效应;稍不均匀场中0.1MPa气压下的c-C_4F_8体积分数为30%的c-C_4F_8/N_2与c-C_4F_8/CO_2混合气体的绝缘性能分别约为SF_6的75%和79%;5%~30%体积分数的c-C_4F_8/N_2与c-C_4F_8/CO_2的协同效应系数分别在0.20~0.79之间和0.15~0.65之间。从绝缘性能、液化温度和环境保护等方面来看,c-C_4F_8/N_2与c-C_4F_8/CO_2混合气体有可能作为SF_6的替代气体,应用在电力设备中。  相似文献   

10.
电亲和性气体的放电电压对不均匀电场分布较敏感,高压电气设备电极表面存在的表面粗糙度效应会凸显,从而降低气体绝缘性能。C_4F_7N/CO_2混合气体是一种有潜力的SF_6替代气体,有必要研究C_4F_7N/CO_2对不均匀电场分布的敏感特性。该文从理论上分析电极表面粗糙引起的局部电场畸变,计算电场畸变程度对C_4F_7N/CO_2绝缘性能的影响,提出采用优异值来评估C_4F_7N/CO_2混合气体对不均匀电场的耐受能力。与SF_6气体对比,发现C_4F_7N/CO_2的优异值随C4F7N含量的降低而增大;当C4F7N体积分数低于20%时,C_4F_7N/CO_2混合气体的优异值比SF_6气体的优异值大。为验证计算结果,制作粗糙电极放电模型进行C_4F_7N/CO_2混合气体和SF_6气体的放电试验,获得了C_4F_7N/CO_2混合气体和SF_6气体的优异值,与计算结果接近。若采用C_4F_7N/CO_2混合气体的设备具有与采用SF_6气体相同的绝缘性能时,分析表明当C4F7N体积分数为4%~20%范围时,SF_6气体绝缘设备中电极表面粗糙度控制值6.3μm的标准适用于C_4F_7N/CO_2混合气体设备。  相似文献   

11.
SF_6气体由于其优异的电气性能而广泛应用于电力行业,然而,由于其全球变暖潜能值极高,国内外学者在过去的几十年里对SF_6替代气体做了广泛研究,但由于它们都各有缺陷,故很难在实际生产中加以应用。文中以C_5F_(10)O/CO_2混合气体作为主要研究对象、以SF_6气体作为对照,研究了混合气体中C_5F_(10)O分压力分别为20 k Pa和40 k Pa、总压力为0.1~0.5 MPa时的工频耐压和雷电冲击(lightning impulse,LI)性能,并分析了其作为SF_6替代气体的可能性。实验结果表明,0.2 MPa的混合气体中混入20 k Pa和40 k Pa的C_5F_(10)O,可分别使混合气体的工频放电电压达到相同气压下SF_6气体的61.89%和81.99%。C_5F_(10)O分压力40 k Pa、总压力0.5 MPa的混合气体正、负极性雷电冲击放电电压分别是0.3 MPa时SF_6气体的88.9%和89.9%。因此,通过增加C_5F_(10)O的含量或提高混合气体的总压力,均可有效提高混合气体的绝缘性能,其中,前者更为有效。  相似文献   

12.
研究环保绝缘气体具有深远的社会意义。C_4F_7N、C_5F_(10)O混合气体是最有希望替代高温室效应SF_6的环保绝缘气体。对C_4F_7N/CO_2、C_5F_(10)O/C_6F_(12)O/Air混合气体的GWP值、液化性能和绝缘性能进行了详细研究。C_4F_7N/CO_2(总压7 bar,C_4F_7N分压0.466 bar)的GWP值503,是SF_6的2.13%;C_5F_(10)O/C_6F_(12)O/Air(总压8 bar,C_5F_(10)O分压0.285 bar,C_6F_(12)O分压0.100 bar)的GWP值0.33,是SF_6的0.001%。C_4F_7N、C_5F_(10)O气体沸点较高,C_4F_7N气体在-25℃环境,其饱和蒸气压为0.466 bar;C_5F_(10)O气体在-5℃环境,其饱和蒸气压为0.285 bar。C_4F_7N/CO_2、C_5F_(10)O/Air混合气体属于正协同效应气体,具有冲击特性,对负极性冲击电压更为敏感。420 k V GIS用母线在雷电冲击耐受电压1 425 kV下,最大电场强度为20.4 kV/mm;可以选择C_4F_7N/CO_2(C_4F_7N分压0.466 bar,最低功能充气总压7 bar)作为绝缘介质,满足户外GIS-25℃的低温环境要求;也可以选择C_5F_(10)O/C_6F_(12)O/Air(C_5F_(10)O分压0.285 bar,C_6F_(12)O分压0.100 bar,最低功能充气总压8 bar)混合气体作为绝缘介质,满足户内GIS-5℃的低温环境要求。研究结果为进一步研发环保型GIS提供参考。  相似文献   

13.
C_4F_7N/CO_2混合气体有潜力替代SF_6气体应用于气体绝缘全封闭组合电器(GIS)或环保气体绝缘管道(GIL)等电气设备中作为绝缘电介质,掌握其绝缘性能是进行电气设备绝缘设计的基础。电气设备在实际运行中会遇到不同的环境温度,有必要研究温度变化时C_4F_7N/CO_2混合气体的绝缘性能。常温下C_4F_7N/CO_2混合气体的绝缘性能已有较多研究,但鲜见不同温度下的研究。该文研究了-35~20℃温度范围内,温度对C_4F_7N/CO_2混合气体的工频放电场强的影响规律,建立C_4F_7N/CO_2混合气体的放电场强随温度变化的计算模型。为验证计算模型,开展不同温度下的工频放电试验,采用球板电极下的放电试验得到初始充气压力0.7MPa和0.6MPa下,混合比例9%C_4F_7N/91%CO_2混合气体在不同温度下的工频放电电压,得到0.7MPa下混合比例为9%C_4F_7N/91%CO_2混合气体的液化温度约为-19℃,0.6MPa下的液化温度约为-23℃,试验结果验证了计算模型的有效性。同时发现C_4F_7N/CO_2混合气体在发生液化后,其工频放电场强随温度降低而显著降低。利用该文的计算模型研究0.6MPa和0.7MPa下不同混合比例的C_4F_7N/CO_2混合气体的工频放电场强随温度的变化,获得了不同混合比例不同温度下C_4F_7N/CO_2混合气体的工频放电场强。  相似文献   

14.
研究SF_6替代气体及其在气体绝缘设备中应用的可行性是近年来电气工程领域的热点之一。C_4F_7N是一种全球变暖潜能值低、绝缘性能优异的环保型绝缘气体,它与CO_2组成的混合气体有望完全替代SF_6。该文通过试验研究C_4F_7N含量为5%、9%、13%的C_4F_7N/CO_2混合气体中252kV盆式绝缘子的工频耐压和沿面闪络特性,并与0.5MPa SF6中的实验结果进行对比。结果表明:绝大部分沿面闪络发生在盆式绝缘子的凹面侧而非凸面侧;C_4F_7N/CO_2混合气体的沿面闪络电压随气压的上升而升高;相同气压下,沿面闪络电压随着C_4F_7N含量的增加而升高,并存在饱和趋势。0.6MPa下9%C_4F_7N/91%CO_2与0.5MPa下SF_6中绝缘子的沿面闪络电压近似相等。最后结合实验数据和仿真结果,制定了绝缘件的电场强度设计基准。  相似文献   

15.
不同电场分布下混合气体雷电冲击放电特性是气体绝缘金属封闭输电线路(GILs)的设计基础,文中分别研究了稍不均匀电场(电场不均匀度系数f=1.6)和极不均匀电场(f=5.3和f=10.3)下C_4F_7N/CO_2混合气体雷电冲击放电特性的变化规律。结果表明:稍不均匀场中,C_4F_7N/CO_2混合气体的放电电压在高气压下出现微弱的饱和趋势,当气压小于0.4MPa时,其相对于在0.4MPa下SF_6的绝缘强度达到了最大值,即随气压的升高,混合气体的相对绝缘性能并无显著提升;随着电场不均匀度的增大,C_4F_7N/CO_2混合气体放电电压显著下降,且正极性放电电压远低于负极性,表现出对电场不均匀的极高敏感性;由此定义了电场敏感系数S,以表征绝缘介质在存在电场集中时放电电压的下降程度,研究结果表明,雷电冲击下气体介质对电场不均匀度的敏感性表现为C_4F_7N/CO_2(5%~20%)SF_6CO_2。  相似文献   

16.
《高压电器》2021,57(3)
SF_6替代气体在电力设备中的应用研究越来越广泛,其中氟化腈C_4F_7N被认为是目前最具潜力实现SF_6替代的气体之一。文中结合隔离开关断口结构,研究了C_4F_7N/CO_2二元混合气体的雷电冲击绝缘特性。基于混合气体绝缘试验平台,重点分析了气体种类,电压极性、充气气压、电极距离、C_4F_7N占比对50%击穿电压的影响规律。试验结果表明:在研究范围内,50%击穿电压随着充气气压、电极距离和C_4F_7N占比的增大均呈升高趋势。当充气气压升高到100、150、200 k Pa时,对应50%击穿电压(20:80,15 mm)分别为109.7、152.9、179.6 kV;当电极距离为5、10、15 mm时,50%击穿电压(35:65,200 k Pa)分别为73.4、138.5、203.0 kV;当C_4F_7N占比为20%、35%和50%时,50%击穿电压(15 mm,200 kPa)分别为180.0、203.0、218.4 kV。  相似文献   

17.
CF_3I及其混合气体作为SF_6应用于电气设备的潜在替代物被广泛关注,该文从不同电场下工频击穿性能的角度探讨CF_3I/N_2替代SF_6气体的可行性。通过工频击穿试验探究气压、混合比、电场利用系数3种因素对CF_3I/N_2工频击穿电压的影响,并与相同条件下的SF_6及SF_6/N_2进行对比分析,使用协同效应指数C值判定混合气体协同效应类型并定量分析协同效应强弱。结果表明,CF_3I/N_2在不同电场、不同混合比下的工频击穿电压随气压均呈线性增长,随着电场利用系数的增加,其工频击穿电压随气压增长的线性增长率逐渐提高;纯CF_3I对电场的敏感度尤其高。N_2的加入,改善了CF_3I对电场的敏感度;极不均匀电场下,CF_3I/N_2混合气体在0.15MPa及以上气压呈正协同效应,协同效应明显程度整体优于SF_6/N_2混合气体。稍不均匀电场和准均匀电场下,CF_3I/N_2呈现协同效应,气压越高,协同效应越明显;混合比为30%,气压为0.3MPa的CF_3I/N_2可以替代纯SF_6应用于气体绝缘输电线路和气体绝缘开关柜等电气设备中。  相似文献   

18.
《高压电器》2021,57(3)
SF_6气体由于其优秀的绝缘和灭弧性能而被广泛应用于高压电力开关设备中。但是,SF_6是一种强温室效应的气体,因此,研究以氟化腈(C_4F_7N)气体为代表的新型环保气体作为SF_6的替代气体成为了目前高压电器领域的热点问题。文中针对126 kV隔离开关结构,建立了燃弧过程的磁流体动力学模型,采用SF_6气体和C_4F_7N/CO_2混合气体的真实气体模型,对比研究了SF_6和C_4F_7N/CO_2混合气体在不同充气压力和触头运动速度下的燃弧过程。建立了弧后电击穿的评估方法,针对C_4F_7N/CO_2混合气体在隔离开关结构下弧后的温度及气压分布,预测了弧后最有可能发生电击穿的区域。文中的结果可以为新型环保气体在隔离开关设备中的应用和优化设计提供参考。  相似文献   

19.
《高压电器》2021,57(3)
SF_6气体因其温室效应所带来的问题被越来越多的人所重视,C_5F_(10)O(C5)、C_4F_7N(C4)及其与Air或CO_2的混合气体被认为是目前最具潜力替代SF_6的绝缘介质。文中基于搭建的可拆实验装置和平台,以板板、同轴两种典型电极结构,实验研究了均匀电场中SF_6及其替代气体雷电冲击特性。结果表明:SF_6、C5/Air和C4/CO_2气体50%击穿电压均随充气压力的升高而增大,SF_6气体的上升率最大,C4/CO_2上升率最小;在同轴结构下,施加雷电冲击电压的极性对SF_6和C4/CO_2气体的击穿电压影响相对较大,对C5/Air气体的影响相对较小;在板板电极结构下,3种气体50%击穿电压随电极开距均呈近线性增加趋势,并且充气压力越高,线性度越高。通过替代气体绝缘特性与SF_6的比值发现,在充气压力较高的设备中,仅靠提高C5/Air、C4/CO_2混合气体的充气压力来改善其绝缘性能,在应用可行性方面会受到很大的局限;在充气压力较低的设备中应用,C4/CO混合气体更具替代SF的可行性。  相似文献   

20.
探索了新型环保绝缘气体C_6F_(12)O与N_2混合气体在交流电压下的击穿特性和分解特性。讨论了C_6F_(12)O与N_2在设备中使用的混合比,并在工频交流平台下进行击穿实验,探究C_6F_(12)O与N_2混合气体在准均匀场下的击穿性能并与SF6混合气体进行比较。对3%C_6F_(12)O与N_2混合气体进行100次击穿实验后采用GC-MS定性检测混合气体击穿后的分解产物,最后采用密度泛函理论计算分解产物的生成过程,分析温度对生成能量的影响并计算分解产物分子轨道间隙。实验结果表明:在0.10MPa下3%C_6F_(12)O与N_2混合气体的击穿电压约为纯N_2的1.7倍,与10%SF6与N_2混合气体的击穿电压相当。击穿后检测到的分解产物主要为CF_4、C_2F_6、C3F6、C_3F_8、C_4F_(10)和C_5F_(12)。计算表明:生成主要分解产物的反应能量随着温度升高呈现不同的变化趋势,且分解产物的分子轨道间隙值由大到小的排序依次为CF_4,C_2F_6,C_3F_8,C_4F_(10),C_5F_(12),C_3F_6。CF_4分子的轨道间隙值最大,约为12.590 eV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号